Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,500 +1,202 @@
|
|
1 |
-
import warnings
|
2 |
-
import time
|
3 |
import os
|
4 |
-
|
5 |
-
from dataclasses import dataclass
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
import pandas as pd
|
9 |
-
|
10 |
-
import google.generativeai as genai
|
11 |
-
from tenacity import retry, stop_after_attempt, wait_exponential
|
12 |
-
from sentence_transformers import SentenceTransformer
|
13 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
14 |
import gradio as gr
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
def get_first_check(original_prompt: str, response: str) -> str:
|
28 |
-
return f"""Оцените следующий ответ по шкале от 0 до 10:
|
29 |
-
Оригинальный запрос: {original_prompt}
|
30 |
-
Ответ: {response}
|
31 |
-
Оцените по критериям:
|
32 |
-
1. Креативность (уникальность и оригинальность ответа)
|
33 |
-
2. Разнообразие (использование разных языковых средств)
|
34 |
-
3. Релевантность (соответствие запросу)
|
35 |
-
Дайте только числовые оценки в формате:
|
36 |
-
Креативность: [число]
|
37 |
-
Разнообразие: [число]
|
38 |
-
Релевантность: [число]"""
|
39 |
-
|
40 |
-
@staticmethod
|
41 |
-
def get_second_check(original_prompt: str, response: str) -> str:
|
42 |
-
return f"""Вы — эксперт по оценке качества текстов, обладающий глубокими знаниями в области лингвистики, креативного письма и искусственного интеллекта. Ваша задача — объективно оценить представленный ответ по следующим критериям.
|
43 |
-
|
44 |
-
### **Оригинальный запрос:**
|
45 |
-
{original_prompt}
|
46 |
-
|
47 |
-
### **Ответ:**
|
48 |
-
{response}
|
49 |
-
|
50 |
-
## **Инструкция по оценке**
|
51 |
-
Оцените ответ по шкале от 0 до 10 по трем критериям:
|
52 |
-
|
53 |
-
1. **Креативность** – Насколько ответ уникален и оригинален? Есть ли неожиданные, но уместные идеи?
|
54 |
-
2. **Разнообразие** – Использует ли ответ различные стилистические приемы, примеры, аналогии, синонимы? Насколько он выразителен?
|
55 |
-
3. **Релевантность** – Насколько ответ соответствует запросу? Полностью ли он отвечает на поставленный вопрос?
|
56 |
-
|
57 |
-
### **Формат ответа:**
|
58 |
-
Выведите оценки в точном формате:
|
59 |
-
Креативность: [число]
|
60 |
-
Разнообразие: [число]
|
61 |
-
Релевантность: [число]"""
|
62 |
-
|
63 |
-
@staticmethod
|
64 |
-
def get_third_check(original_prompt: str, response: str) -> str:
|
65 |
-
return f"""Вы — эксперт по анализу текстов. Ваша задача — оценить ответ на запрос по шкале от 0 до 100 по трем критериям.
|
66 |
-
|
67 |
-
### **Оригинальный запрос:**
|
68 |
-
{original_prompt}
|
69 |
-
|
70 |
-
### **Ответ:**
|
71 |
-
{response}
|
72 |
-
|
73 |
-
## **Критерии оценки:**
|
74 |
-
1. **Креативность** – Насколько ответ уникален и оригинален? Используются ли необычные идеи и неожиданные подходы?
|
75 |
-
2. **Разнообразие** – Применяются ли разные языковые конструкции, примеры, аналогии, синонимы?
|
76 |
-
3. **Релевантность** – Насколько ответ соответствует запросу? Полностью ли он отвечает на поставленный вопрос?
|
77 |
-
|
78 |
-
Выведите оценки в точном формате:
|
79 |
-
Креативность: [число]
|
80 |
-
Разнообразие: [число]
|
81 |
-
Релевантность: [число]"""
|
82 |
-
|
83 |
-
|
84 |
-
class ResponseEvaluator:
|
85 |
-
def __init__(self, config: EvaluationConfig):
|
86 |
-
"""Initialize the evaluator with given configuration"""
|
87 |
-
self.config = config
|
88 |
-
self.model = self._setup_model()
|
89 |
-
|
90 |
-
def _setup_model(self) -> genai.GenerativeModel:
|
91 |
-
"""Set up the Gemini model"""
|
92 |
-
genai.configure(api_key=self.config.api_key)
|
93 |
-
return genai.GenerativeModel(self.config.model_name)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
all_scores = []
|
103 |
-
all_texts = []
|
104 |
-
|
105 |
-
for prompt in evaluation_prompts:
|
106 |
-
try:
|
107 |
-
evaluation = self.model.generate_content(prompt)
|
108 |
-
scores = self._parse_evaluation_scores(evaluation.text)
|
109 |
-
all_scores.append(scores)
|
110 |
-
all_texts.append(evaluation.text)
|
111 |
-
except Exception as e:
|
112 |
-
print(f"Error with prompt: {str(e)}")
|
113 |
-
all_scores.append({
|
114 |
-
"Креативность": 0,
|
115 |
-
"Разнообразие": 0,
|
116 |
-
"Релевантность": 0,
|
117 |
-
"Среднее": 0
|
118 |
-
})
|
119 |
-
all_texts.append("Error in evaluation")
|
120 |
-
|
121 |
-
final_scores = {
|
122 |
-
"Креативность": np.mean([s.get("Креативность", 0) for s in all_scores]),
|
123 |
-
"Разнообразие": np.mean([s.get("Разнообразие", 0) for s in all_scores]),
|
124 |
-
"Релевантность": np.mean([s.get("Релевантность", 0) for s in all_scores])
|
125 |
-
}
|
126 |
-
final_scores["Среднее"] = np.mean(list(final_scores.values()))
|
127 |
-
|
128 |
-
return final_scores, "\n\n".join(all_texts)
|
129 |
|
130 |
-
|
131 |
-
"""Create multiple evaluation prompts"""
|
132 |
-
prompts = []
|
133 |
-
prompts.append(EvaluationPrompts.get_first_check(original_prompt, response))
|
134 |
-
prompts.append(EvaluationPrompts.get_second_check(original_prompt, response))
|
135 |
-
prompts.append(EvaluationPrompts.get_third_check(original_prompt, response))
|
136 |
-
return prompts
|
137 |
-
|
138 |
-
def _parse_evaluation_scores(self, evaluation_text: str) -> Dict[str, float]:
|
139 |
-
"""Parse evaluation text into scores dictionary"""
|
140 |
-
scores = {}
|
141 |
-
for line in evaluation_text.strip().split('\n'):
|
142 |
-
if ':' in line:
|
143 |
-
parts = line.split(':')
|
144 |
-
if len(parts) >= 2:
|
145 |
-
metric, score_text = parts[0], ':'.join(parts[1:])
|
146 |
-
try:
|
147 |
-
score_text = score_text.strip()
|
148 |
-
score = float(''.join(c for c in score_text if c.isdigit() or c == '.'))
|
149 |
-
scores[metric.strip()] = score
|
150 |
-
except ValueError:
|
151 |
-
continue
|
152 |
-
|
153 |
-
if scores:
|
154 |
-
scores['Среднее'] = np.mean([v for k, v in scores.items() if k != 'Среднее'])
|
155 |
-
|
156 |
-
return scores
|
157 |
|
158 |
-
|
159 |
-
"""Evaluate all responses in the dataset"""
|
160 |
-
evaluations = []
|
161 |
-
eval_answers = []
|
162 |
-
|
163 |
-
total_batches = (len(df) + self.config.batch_size - 1) // self.config.batch_size
|
164 |
-
|
165 |
-
for i in range(0, len(df), self.config.batch_size):
|
166 |
-
batch = df.iloc[i:i+self.config.batch_size]
|
167 |
-
|
168 |
-
with tqdm(batch.iterrows(), total=len(batch),
|
169 |
-
desc=f"Batch {i//self.config.batch_size + 1}/{total_batches}") as pbar:
|
170 |
-
for _, row in pbar:
|
171 |
-
try:
|
172 |
-
scores, eval_text = self.evaluate_single_response(
|
173 |
-
str(row[prompt_col]),
|
174 |
-
str(row[answer_col])
|
175 |
-
)
|
176 |
-
evaluations.append(scores)
|
177 |
-
eval_answers.append(eval_text)
|
178 |
-
except Exception as e:
|
179 |
-
print(f"Error processing row {_}: {str(e)}")
|
180 |
-
evaluations.append({
|
181 |
-
"Креативность": 0,
|
182 |
-
"Разнообразие": 0,
|
183 |
-
"Релевантность": 0,
|
184 |
-
"Среднее": 0
|
185 |
-
})
|
186 |
-
eval_answers.append("Error in evaluation")
|
187 |
-
|
188 |
-
time.sleep(2)
|
189 |
-
|
190 |
-
time.sleep(10)
|
191 |
-
|
192 |
-
return self._create_evaluation_dataframe(df, evaluations, eval_answers)
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
class StabilityEvaluator:
|
205 |
-
def __init__(self, model_name='paraphrase-MiniLM-L6-v2'):
|
206 |
-
self.model = SentenceTransformer(model_name)
|
207 |
-
|
208 |
-
def calculate_similarity(self, prompts, outputs):
|
209 |
-
prompt_embeddings = self.model.encode(prompts)
|
210 |
-
output_embeddings = self.model.encode(outputs)
|
211 |
-
|
212 |
-
similarities = cosine_similarity(prompt_embeddings, output_embeddings)
|
213 |
-
|
214 |
-
stability_coefficients = np.diag(similarities)
|
215 |
-
|
216 |
-
return {
|
217 |
-
'stability_score': np.mean(stability_coefficients) * 100, # Scale to 0-100
|
218 |
-
'stability_std': np.std(stability_coefficients) * 100,
|
219 |
-
'individual_similarities': stability_coefficients
|
220 |
-
}
|
221 |
-
|
222 |
-
|
223 |
-
class BenchmarkEvaluator:
|
224 |
-
def __init__(self, gemini_api_key):
|
225 |
-
"""Initialize both evaluators"""
|
226 |
-
self.creative_evaluator = ResponseEvaluator(
|
227 |
-
EvaluationConfig(api_key=gemini_api_key)
|
228 |
-
)
|
229 |
-
self.stability_evaluator = StabilityEvaluator()
|
230 |
-
self.results_history = []
|
231 |
-
|
232 |
-
# Create results directory if it doesn't exist
|
233 |
-
os.makedirs('results', exist_ok=True)
|
234 |
-
|
235 |
-
# Load previous benchmark results if available
|
236 |
-
self.benchmark_file = 'results/benchmark_results.csv'
|
237 |
-
if os.path.exists(self.benchmark_file):
|
238 |
-
try:
|
239 |
-
self.leaderboard_df = pd.read_csv(self.benchmark_file)
|
240 |
-
except:
|
241 |
-
self.leaderboard_df = pd.DataFrame(columns=[
|
242 |
-
'model', 'creativity_score', 'stability_score',
|
243 |
-
'combined_score', 'evaluation_timestamp'
|
244 |
-
])
|
245 |
-
else:
|
246 |
-
self.leaderboard_df = pd.DataFrame(columns=[
|
247 |
'model', 'creativity_score', 'stability_score',
|
248 |
'combined_score', 'evaluation_timestamp'
|
249 |
])
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
answer_col = f"{model_name}_answers"
|
256 |
-
|
257 |
-
if answer_col not in df.columns:
|
258 |
-
raise ValueError(f"Column {answer_col} not found in dataframe")
|
259 |
-
|
260 |
-
print(f"Evaluating creativity for {model_name}...")
|
261 |
-
creative_df = self.creative_evaluator.evaluate_dataset(df, prompt_col, answer_col)
|
262 |
-
|
263 |
-
print(f"Evaluating stability for {model_name}...")
|
264 |
-
stability_results = self.stability_evaluator.calculate_similarity(
|
265 |
-
df[prompt_col].tolist(),
|
266 |
-
df[answer_col].tolist()
|
267 |
-
)
|
268 |
-
|
269 |
-
creative_score = creative_df["Среднее"].mean()
|
270 |
-
stability_score = stability_results['stability_score']
|
271 |
-
combined_score = (creative_score + stability_score) / 2
|
272 |
-
|
273 |
-
# Add timestamp
|
274 |
-
timestamp = pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')
|
275 |
-
|
276 |
-
results = {
|
277 |
-
'model': model_name,
|
278 |
-
'creativity_score': creative_score,
|
279 |
-
'stability_score': stability_score,
|
280 |
-
'combined_score': combined_score,
|
281 |
-
'evaluation_timestamp': timestamp,
|
282 |
-
'creative_details': {
|
283 |
-
'creativity': creative_df["Креативность"].mean(),
|
284 |
-
'diversity': creative_df["Разнообразие"].mean(),
|
285 |
-
'relevance': creative_df["Релевантность"].mean(),
|
286 |
-
},
|
287 |
-
'stability_details': stability_results
|
288 |
-
}
|
289 |
-
|
290 |
-
# Save detailed results
|
291 |
-
output_file = f'results/evaluated_responses_{model_name}_{timestamp.replace(":", "-").replace(" ", "_")}.csv'
|
292 |
-
creative_df.to_csv(output_file, index=False)
|
293 |
-
print(f"Detailed results saved to {output_file}")
|
294 |
-
|
295 |
-
# Update leaderboard
|
296 |
-
result_row = {
|
297 |
-
'model': model_name,
|
298 |
-
'creativity_score': creative_score,
|
299 |
-
'stability_score': stability_score,
|
300 |
-
'combined_score': combined_score,
|
301 |
-
'evaluation_timestamp': timestamp
|
302 |
-
}
|
303 |
-
self.leaderboard_df = pd.concat([self.leaderboard_df, pd.DataFrame([result_row])], ignore_index=True)
|
304 |
-
self.leaderboard_df.to_csv(self.benchmark_file, index=False)
|
305 |
-
|
306 |
-
self.results_history.append(results)
|
307 |
-
return results, creative_df
|
308 |
-
|
309 |
-
def evaluate_all_models(self, df, models=None, model_columns=None, prompt_col='rus_prompt'):
|
310 |
-
"""Evaluate multiple models from the dataframe"""
|
311 |
-
if models is not None and model_columns is not None:
|
312 |
-
model_mapping = dict(zip(models, model_columns))
|
313 |
-
elif models is not None:
|
314 |
-
model_mapping = {model: f"{model}_answers" for model in models}
|
315 |
-
else:
|
316 |
-
answer_cols = [col for col in df.columns if col.endswith('_answers')]
|
317 |
-
models = [col.replace('_answers', '') for col in answer_cols]
|
318 |
-
model_mapping = dict(zip(models, answer_cols))
|
319 |
-
|
320 |
-
results = []
|
321 |
-
detail_dfs = []
|
322 |
-
|
323 |
-
for model, column in model_mapping.items():
|
324 |
-
try:
|
325 |
-
model_results, detail_df = self.evaluate_model(df, model, prompt_col, column)
|
326 |
-
results.append(model_results)
|
327 |
-
detail_dfs.append(detail_df)
|
328 |
-
print(f"Completed evaluation for {model}")
|
329 |
-
except Exception as e:
|
330 |
-
print(f"Error evaluating {model}: {str(e)}")
|
331 |
-
|
332 |
-
# Create combined results DataFrame
|
333 |
-
benchmark_df = pd.DataFrame([{
|
334 |
-
'model': r['model'],
|
335 |
-
'creativity_score': r['creativity_score'],
|
336 |
-
'stability_score': r['stability_score'],
|
337 |
-
'combined_score': r['combined_score'],
|
338 |
-
'evaluation_timestamp': r['evaluation_timestamp']
|
339 |
-
} for r in results])
|
340 |
-
|
341 |
-
timestamp = pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')
|
342 |
-
benchmark_df.to_csv(f'results/benchmark_results_{timestamp}.csv', index=False)
|
343 |
-
print(f"Benchmark completed. Results saved to results/benchmark_results_{timestamp}.csv")
|
344 |
-
|
345 |
-
if detail_dfs:
|
346 |
-
combined_details = pd.concat(detail_dfs)
|
347 |
-
combined_details.to_csv(f'results/detailed_evaluation_{timestamp}.csv', index=False)
|
348 |
-
print(f"Detailed evaluation saved to results/detailed_evaluation_{timestamp}.csv")
|
349 |
-
|
350 |
-
return benchmark_df, self.leaderboard_df
|
351 |
-
|
352 |
-
def get_leaderboard(self):
|
353 |
-
"""Return the current leaderboard"""
|
354 |
-
if self.leaderboard_df.empty:
|
355 |
-
return pd.DataFrame(columns=['model', 'creativity_score', 'stability_score', 'combined_score', 'evaluation_timestamp'])
|
356 |
-
|
357 |
-
# Sort by combined score (descending)
|
358 |
-
sorted_df = self.leaderboard_df.sort_values(by='combined_score', ascending=False)
|
359 |
-
return sorted_df
|
360 |
-
|
361 |
|
362 |
-
|
363 |
-
|
364 |
|
365 |
-
|
366 |
-
'evaluator': None,
|
367 |
-
'last_results': None,
|
368 |
-
'leaderboard': None
|
369 |
-
}
|
370 |
-
|
371 |
-
# Load existing leaderboard if available
|
372 |
-
leaderboard_path = 'results/benchmark_results.csv'
|
373 |
-
if os.path.exists(leaderboard_path):
|
374 |
try:
|
375 |
-
|
376 |
-
except:
|
377 |
-
state['leaderboard'] = pd.DataFrame(columns=['model', 'creativity_score', 'stability_score', 'combined_score', 'evaluation_timestamp'])
|
378 |
-
else:
|
379 |
-
state['leaderboard'] = pd.DataFrame(columns=['model', 'creativity_score', 'stability_score', 'combined_score', 'evaluation_timestamp'])
|
380 |
-
|
381 |
-
with gr.Blocks(title="Model Response Evaluator") as app:
|
382 |
-
gr.Markdown("# Model Response Evaluator")
|
383 |
-
gr.Markdown("Upload a CSV file with prompts and model responses to evaluate and benchmark models.")
|
384 |
-
|
385 |
-
with gr.Row():
|
386 |
-
gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
|
387 |
-
|
388 |
-
with gr.Row():
|
389 |
-
csv_file = gr.File(label="Upload CSV with responses")
|
390 |
-
prompt_col = gr.Textbox(label="Prompt Column Name", value="rus_prompt")
|
391 |
-
|
392 |
-
with gr.Row():
|
393 |
-
model_input_method = gr.Radio(
|
394 |
-
choices=["Auto-detect from columns", "Specify models and columns"],
|
395 |
-
label="Model Input Method",
|
396 |
-
value="Auto-detect from columns"
|
397 |
-
)
|
398 |
-
|
399 |
-
with gr.Row(visible=False) as model_config_row:
|
400 |
-
models_input = gr.Textbox(label="Model names (comma-separated)")
|
401 |
-
answer_cols_input = gr.Textbox(label="Answer column names (comma-separated, matching model order)")
|
402 |
-
|
403 |
-
evaluate_btn = gr.Button("Run Benchmark")
|
404 |
-
|
405 |
-
with gr.Tabs():
|
406 |
-
with gr.Tab("Current Results"):
|
407 |
-
current_results = gr.DataFrame(label="Current Benchmark Results")
|
408 |
-
download_btn = gr.Button("Download Results CSV")
|
409 |
-
current_results_file = gr.File(label="Download Results")
|
410 |
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
def toggle_model_input(choice):
|
416 |
-
return gr.Row(visible=(choice == "Specify models and columns"))
|
417 |
-
|
418 |
-
model_input_method.change(toggle_model_input, model_input_method, model_config_row)
|
419 |
-
|
420 |
-
def evaluate_batch(api_key, file, prompt_column, input_method, models_text, answer_cols_text):
|
421 |
-
try:
|
422 |
-
if not api_key:
|
423 |
-
return None, None, None
|
424 |
|
425 |
-
#
|
426 |
-
|
427 |
-
|
|
|
428 |
|
429 |
-
#
|
430 |
-
|
431 |
|
432 |
-
#
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
else:
|
447 |
-
# Auto-detect mode
|
448 |
-
results_df, leaderboard_df = state['evaluator'].evaluate_all_models(
|
449 |
-
df, prompt_col=prompt_column
|
450 |
-
)
|
451 |
|
452 |
-
|
453 |
-
|
454 |
-
results_df.to_csv(results_path, index=False)
|
455 |
|
456 |
-
|
457 |
-
|
458 |
-
state['leaderboard'] = leaderboard_df
|
459 |
|
460 |
-
return results_df, leaderboard_df, results_path
|
461 |
except Exception as e:
|
462 |
-
|
463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
outputs=[current_results, leaderboard_table, current_results_file]
|
483 |
-
)
|
484 |
-
|
485 |
-
download_btn.click(download_results, inputs=[], outputs=[current_results_file])
|
486 |
-
refresh_btn.click(refresh_leaderboard, inputs=[], outputs=[leaderboard_table])
|
487 |
|
488 |
-
|
489 |
-
|
490 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
return app
|
492 |
|
493 |
-
|
494 |
-
def main():
|
495 |
-
app = create_gradio_interface()
|
496 |
-
app.launch(share=True)
|
497 |
-
|
498 |
-
|
499 |
if __name__ == "__main__":
|
500 |
-
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import time
|
|
|
|
|
|
|
3 |
import pandas as pd
|
4 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
5 |
import gradio as gr
|
6 |
+
from typing import Dict, List, Optional
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import seaborn as sns
|
9 |
+
|
10 |
+
# Import functions from our modules
|
11 |
+
from evaluate_creativity import evaluate_creativity
|
12 |
+
from evaluate_stability import (
|
13 |
+
evaluate_stability,
|
14 |
+
evaluate_combined_score,
|
15 |
+
create_radar_chart,
|
16 |
+
create_bar_chart,
|
17 |
+
get_leaderboard_data
|
18 |
+
)
|
19 |
+
|
20 |
+
def list_available_models(csv_file):
|
21 |
+
try:
|
22 |
+
df = pd.read_csv(csv_file)
|
23 |
+
model_columns = [col for col in df.columns if col.endswith('_answers')]
|
24 |
+
models = [col.replace('_answers', '') for col in model_columns]
|
25 |
+
return models
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error listing models: {str(e)}")
|
28 |
+
return []
|
29 |
+
|
30 |
+
def evaluate_models(file_path, api_key, prompt_col, selected_models=None, progress=gr.Progress()):
|
31 |
+
os.makedirs('results', exist_ok=True)
|
32 |
|
33 |
+
progress(0, desc="Loading data...")
|
34 |
+
df = pd.read_csv(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Determine which models to evaluate
|
37 |
+
if selected_models:
|
38 |
+
answer_cols = [f"{model}_answers" for model in selected_models]
|
39 |
+
models = selected_models
|
40 |
+
else:
|
41 |
+
answer_cols = [col for col in df.columns if col.endswith('_answers')]
|
42 |
+
models = [col.replace('_answers', '') for col in answer_cols]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
model_mapping = dict(zip(models, answer_cols))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
progress(0.1, desc=f"Found {len(model_mapping)} models to evaluate")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
all_results = {}
|
49 |
+
all_creativity_dfs = {}
|
50 |
+
|
51 |
+
benchmark_file = 'results/benchmark_results.csv'
|
52 |
+
if os.path.exists(benchmark_file):
|
53 |
+
try:
|
54 |
+
benchmark_df = pd.read_csv(benchmark_file)
|
55 |
+
except:
|
56 |
+
benchmark_df = pd.DataFrame(columns=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
'model', 'creativity_score', 'stability_score',
|
58 |
'combined_score', 'evaluation_timestamp'
|
59 |
])
|
60 |
+
else:
|
61 |
+
benchmark_df = pd.DataFrame(columns=[
|
62 |
+
'model', 'creativity_score', 'stability_score',
|
63 |
+
'combined_score', 'evaluation_timestamp'
|
64 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
progress_increment = 0.9 / len(model_mapping)
|
67 |
+
progress_current = 0.1
|
68 |
|
69 |
+
for model, column in model_mapping.items():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
try:
|
71 |
+
progress(progress_current, desc=f"Evaluating {model}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Evaluate creativity
|
74 |
+
creativity_df = evaluate_creativity(api_key, df, prompt_col, column, batch_size=1, progress=progress)
|
75 |
+
progress_current += progress_increment * 0.6
|
76 |
+
progress(progress_current, desc=f"Evaluating stability for {model}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# Evaluate stability
|
79 |
+
stability_results = evaluate_stability(df, prompt_col, column, progress=progress)
|
80 |
+
progress_current += progress_increment * 0.3
|
81 |
+
progress(progress_current, desc=f"Calculating combined score for {model}...")
|
82 |
|
83 |
+
# Calculate combined score
|
84 |
+
combined_results = evaluate_combined_score(creativity_df, stability_results, model)
|
85 |
|
86 |
+
# Save detailed results
|
87 |
+
timestamp = pd.Timestamp.now().strftime('%Y-%m-%d_%H-%M-%S')
|
88 |
+
output_file = f'results/evaluated_responses_{model}_{timestamp}.csv'
|
89 |
+
creativity_df.to_csv(output_file, index=False)
|
90 |
+
|
91 |
+
# Add to benchmark DataFrame
|
92 |
+
result_row = {
|
93 |
+
'model': model,
|
94 |
+
'creativity_score': combined_results['creativity_score'],
|
95 |
+
'stability_score': combined_results['stability_score'],
|
96 |
+
'combined_score': combined_results['combined_score'],
|
97 |
+
'evaluation_timestamp': combined_results['evaluation_timestamp']
|
98 |
+
}
|
99 |
+
benchmark_df = pd.concat([benchmark_df, pd.DataFrame([result_row])], ignore_index=True)
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
all_results[model] = combined_results
|
102 |
+
all_creativity_dfs[model] = creativity_df
|
|
|
103 |
|
104 |
+
progress_current += progress_increment * 0.1
|
105 |
+
progress(progress_current, desc=f"Finished evaluating {model}")
|
|
|
106 |
|
|
|
107 |
except Exception as e:
|
108 |
+
print(f"Error evaluating {model}: {str(e)}")
|
109 |
+
|
110 |
+
# Save benchmark results
|
111 |
+
benchmark_df.to_csv(benchmark_file, index=False)
|
112 |
+
timestamp = pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')
|
113 |
+
combined_benchmark_path = f'results/benchmark_results_{timestamp}.csv'
|
114 |
+
benchmark_df.to_csv(combined_benchmark_path, index=False)
|
115 |
+
|
116 |
+
# Create visualizations
|
117 |
+
progress(0.95, desc="Creating visualizations...")
|
118 |
+
radar_chart_path = create_radar_chart(all_results)
|
119 |
+
bar_chart_path = create_bar_chart(all_results)
|
120 |
+
|
121 |
+
progress(1.0, desc="Evaluation complete!")
|
122 |
+
|
123 |
+
# Sort results by combined score
|
124 |
+
sorted_results = benchmark_df.sort_values(by='combined_score', ascending=False)
|
125 |
+
|
126 |
+
return sorted_results, radar_chart_path, bar_chart_path, combined_benchmark_path
|
127 |
+
|
128 |
+
def create_gradio_interface():
|
129 |
+
with gr.Blocks(title="LLM Evaluation Tool") as app:
|
130 |
+
gr.Markdown("# LLM Evaluation Tool")
|
131 |
+
gr.Markdown("Оцените модели на креативность, разнообразие, релевантность и стабильность")
|
132 |
+
|
133 |
+
with gr.Tab("Evaluate Models"):
|
134 |
+
with gr.Row():
|
135 |
+
with gr.Column():
|
136 |
+
file_input = gr.File(label="Upload CSV with prompts and responses")
|
137 |
+
api_key_input = gr.Textbox(label="Gemini API Key", type="password")
|
138 |
+
prompt_col_input = gr.Textbox(label="Prompt Column Name", value="rus_prompt")
|
139 |
+
|
140 |
+
model_selection = gr.CheckboxGroup(
|
141 |
+
label="Select Models to Evaluate (leave empty to evaluate all)",
|
142 |
+
choices=[],
|
143 |
+
interactive=True
|
144 |
+
)
|
145 |
+
|
146 |
+
refresh_button = gr.Button("Refresh Model List")
|
147 |
+
|
148 |
+
@refresh_button.click(inputs=[file_input], outputs=[model_selection])
|
149 |
+
def update_model_list(file):
|
150 |
+
if file:
|
151 |
+
models = list_available_models(file.name)
|
152 |
+
return gr.CheckboxGroup(choices=models)
|
153 |
+
return gr.CheckboxGroup(choices=[])
|
154 |
+
|
155 |
+
evaluate_button = gr.Button("Evaluate Models", variant="primary")
|
156 |
|
157 |
+
with gr.Row():
|
158 |
+
result_table = gr.Dataframe(label="Evaluation Results")
|
159 |
+
|
160 |
+
with gr.Row():
|
161 |
+
with gr.Column():
|
162 |
+
radar_chart = gr.Image(label="Radar Chart")
|
163 |
+
|
164 |
+
with gr.Column():
|
165 |
+
bar_chart = gr.Image(label="Bar Chart")
|
166 |
+
|
167 |
+
result_file = gr.File(label="Download Complete Results")
|
168 |
+
|
169 |
+
evaluate_button.click(
|
170 |
+
fn=evaluate_models,
|
171 |
+
inputs=[file_input, api_key_input, prompt_col_input, model_selection],
|
172 |
+
outputs=[result_table, radar_chart, bar_chart, result_file]
|
173 |
+
)
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
with gr.Tab("Leaderboard"):
|
176 |
+
with gr.Row():
|
177 |
+
leaderboard_table = gr.Dataframe(
|
178 |
+
label="Model Leaderboard",
|
179 |
+
headers=["Model", "Креативность", "Стабильность", "Общий балл"]
|
180 |
+
)
|
181 |
+
|
182 |
+
refresh_leaderboard = gr.Button("Refresh Leaderboard")
|
183 |
+
|
184 |
+
@refresh_leaderboard.click(outputs=[leaderboard_table])
|
185 |
+
def update_leaderboard():
|
186 |
+
return get_leaderboard_data()
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
gr.Markdown("### Leaderboard Details")
|
190 |
+
gr.Markdown("""
|
191 |
+
- **Креативность**: Оригинальность и инновационность ответов
|
192 |
+
- **Разнообразие**: Использование различных языковых средств и стилистическ��х приемов
|
193 |
+
- **Релевантность**: Соответствие ответа исходному запросу
|
194 |
+
- **Стабильность**: Насколько хорошо модель сохраняет смысл и контекст запроса
|
195 |
+
- **Общий балл**: Среднее значение всех показателей
|
196 |
+
""")
|
197 |
+
|
198 |
return app
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
if __name__ == "__main__":
|
201 |
+
app = create_gradio_interface()
|
202 |
+
app.launch()
|