Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
import os
|
2 |
import warnings
|
3 |
import time
|
4 |
from typing import Dict, Tuple, List
|
5 |
from dataclasses import dataclass
|
6 |
-
from pathlib import Path
|
7 |
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
@@ -22,10 +20,6 @@ class EvaluationConfig:
|
|
22 |
api_key: str
|
23 |
model_name: str = "gemini-1.5-flash"
|
24 |
batch_size: int = 5
|
25 |
-
retry_attempts: int = 5
|
26 |
-
min_wait: int = 4
|
27 |
-
max_wait: int = 60
|
28 |
-
score_scale: Tuple[int, int] = (0, 100)
|
29 |
|
30 |
class EvaluationPrompts:
|
31 |
@staticmethod
|
@@ -63,9 +57,7 @@ class EvaluationPrompts:
|
|
63 |
Выведите оценки в точном формате:
|
64 |
Креативность: [число]
|
65 |
Разнообразие: [число]
|
66 |
-
Релевантность: [число]
|
67 |
-
|
68 |
-
Затем подробно объясните каждую оценку, используя примеры из ответа. Если какая-то оценка ниже 50, дайте конкретные рекомендации по улучшению."""
|
69 |
|
70 |
@staticmethod
|
71 |
def get_third_check(original_prompt: str, response: str) -> str:
|
@@ -226,22 +218,6 @@ class StabilityEvaluator:
|
|
226 |
'individual_similarities': stability_coefficients
|
227 |
}
|
228 |
|
229 |
-
def evaluate_dataset(self, df, prompt_col='rus_prompt'):
|
230 |
-
"""Evaluate stability for multiple answer columns"""
|
231 |
-
results = {}
|
232 |
-
|
233 |
-
# Find columns ending with '_answers'
|
234 |
-
answer_columns = [col for col in df.columns if col.endswith('_answers')]
|
235 |
-
|
236 |
-
for column in answer_columns:
|
237 |
-
model_name = column.replace('_answers', '')
|
238 |
-
results[model_name] = self.calculate_similarity(
|
239 |
-
df[prompt_col].tolist(),
|
240 |
-
df[column].tolist()
|
241 |
-
)
|
242 |
-
|
243 |
-
return results
|
244 |
-
|
245 |
|
246 |
class BenchmarkEvaluator:
|
247 |
def __init__(self, gemini_api_key):
|
@@ -314,142 +290,53 @@ class BenchmarkEvaluator:
|
|
314 |
return benchmark_df
|
315 |
|
316 |
|
317 |
-
def evaluate_single_response(gemini_api_key, prompt, response, model_name="Test Model"):
|
318 |
-
"""Evaluate a single response for the UI"""
|
319 |
-
# Create a temporary dataframe
|
320 |
-
df = pd.DataFrame({
|
321 |
-
'rus_prompt': [prompt],
|
322 |
-
f'{model_name}_answers': [response]
|
323 |
-
})
|
324 |
-
|
325 |
-
evaluator = BenchmarkEvaluator(gemini_api_key)
|
326 |
-
|
327 |
-
try:
|
328 |
-
result = evaluator.evaluate_model(df, model_name)
|
329 |
-
|
330 |
-
# Format the result for displaying in UI
|
331 |
-
output = {
|
332 |
-
'Creativity Score': f"{result['creative_details']['creativity']:.2f}",
|
333 |
-
'Diversity Score': f"{result['creative_details']['diversity']:.2f}",
|
334 |
-
'Relevance Score': f"{result['creative_details']['relevance']:.2f}",
|
335 |
-
'Average Creative Score': f"{result['creativity_score']:.2f}",
|
336 |
-
'Stability Score': f"{result['stability_score']:.2f}",
|
337 |
-
'Combined Score': f"{result['combined_score']:.2f}"
|
338 |
-
}
|
339 |
-
|
340 |
-
return output
|
341 |
-
except Exception as e:
|
342 |
-
return {
|
343 |
-
'Error': str(e)
|
344 |
-
}
|
345 |
-
|
346 |
-
|
347 |
-
def evaluate_batch(api_key, file, prompt_column, models_text):
|
348 |
-
"""Process batch evaluation from the UI"""
|
349 |
-
try:
|
350 |
-
# Load the CSV file
|
351 |
-
file_path = file.name
|
352 |
-
df = pd.read_csv(file_path)
|
353 |
-
|
354 |
-
# Process model names if provided
|
355 |
-
models = None
|
356 |
-
if models_text.strip():
|
357 |
-
models = [m.strip() for m in models_text.split(',')]
|
358 |
-
|
359 |
-
# Run the evaluation
|
360 |
-
evaluator = BenchmarkEvaluator(api_key)
|
361 |
-
results = evaluator.evaluate_all_models(df, models, prompt_column)
|
362 |
-
|
363 |
-
return results
|
364 |
-
except Exception as e:
|
365 |
-
return pd.DataFrame({'Error': [str(e)]})
|
366 |
-
|
367 |
-
|
368 |
def create_gradio_interface():
|
369 |
-
"""Create Gradio interface for evaluation app"""
|
370 |
with gr.Blocks(title="Model Response Evaluator") as app:
|
371 |
gr.Markdown("# Model Response Evaluator")
|
372 |
-
gr.Markdown("
|
373 |
|
374 |
-
with gr.
|
375 |
-
|
376 |
-
gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
|
377 |
-
|
378 |
-
with gr.Row():
|
379 |
-
with gr.Column():
|
380 |
-
prompt = gr.Textbox(label="Original Prompt", lines=3)
|
381 |
-
response = gr.Textbox(label="Model Response", lines=6)
|
382 |
-
model_name = gr.Textbox(label="Model Name", value="Test Model")
|
383 |
-
|
384 |
-
evaluate_btn = gr.Button("Evaluate Response")
|
385 |
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
evaluate_single_response,
|
391 |
-
inputs=[gemini_api_key, prompt, response, model_name],
|
392 |
-
outputs=output
|
393 |
-
)
|
394 |
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
with gr.Row():
|
400 |
-
csv_file = gr.File(label="Upload CSV with responses")
|
401 |
-
prompt_col = gr.Textbox(label="Prompt Column Name", value="rus_prompt")
|
402 |
-
models_input = gr.Textbox(label="Model names (comma-separated, leave blank for auto-detection)")
|
403 |
-
|
404 |
-
evaluate_batch_btn = gr.Button("Run Benchmark")
|
405 |
benchmark_output = gr.DataFrame(label="Benchmark Results")
|
406 |
-
|
407 |
-
evaluate_batch_btn.click(
|
408 |
-
evaluate_batch,
|
409 |
-
inputs=[gemini_api_key_batch, csv_file, prompt_col, models_input],
|
410 |
-
outputs=benchmark_output
|
411 |
-
)
|
412 |
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
with gr.Row():
|
419 |
-
batch_size = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Batch Size")
|
420 |
-
retry_attempts = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Retry Attempts")
|
421 |
-
|
422 |
-
with gr.Row():
|
423 |
-
min_wait = gr.Slider(minimum=1, maximum=30, value=4, step=1, label="Minimum Wait Time (seconds)")
|
424 |
-
max_wait = gr.Slider(minimum=10, maximum=300, value=60, step=10, label="Maximum Wait Time (seconds)")
|
425 |
-
|
426 |
-
with gr.Row():
|
427 |
-
gemini_model = gr.Dropdown(
|
428 |
-
choices=["gemini-1.5-flash", "gemini-1.5-pro", "gemini-1.5-ultra"],
|
429 |
-
value="gemini-1.5-flash",
|
430 |
-
label="Gemini Model"
|
431 |
-
)
|
432 |
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
|
|
|
|
|
|
|
|
448 |
return app
|
449 |
|
450 |
|
451 |
def main():
|
452 |
-
"""Main function to run the application"""
|
453 |
app = create_gradio_interface()
|
454 |
app.launch(share=True)
|
455 |
|
|
|
|
|
1 |
import warnings
|
2 |
import time
|
3 |
from typing import Dict, Tuple, List
|
4 |
from dataclasses import dataclass
|
|
|
5 |
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
|
|
20 |
api_key: str
|
21 |
model_name: str = "gemini-1.5-flash"
|
22 |
batch_size: int = 5
|
|
|
|
|
|
|
|
|
23 |
|
24 |
class EvaluationPrompts:
|
25 |
@staticmethod
|
|
|
57 |
Выведите оценки в точном формате:
|
58 |
Креативность: [число]
|
59 |
Разнообразие: [число]
|
60 |
+
Релевантность: [число]"""
|
|
|
|
|
61 |
|
62 |
@staticmethod
|
63 |
def get_third_check(original_prompt: str, response: str) -> str:
|
|
|
218 |
'individual_similarities': stability_coefficients
|
219 |
}
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
class BenchmarkEvaluator:
|
223 |
def __init__(self, gemini_api_key):
|
|
|
290 |
return benchmark_df
|
291 |
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
def create_gradio_interface():
|
|
|
294 |
with gr.Blocks(title="Model Response Evaluator") as app:
|
295 |
gr.Markdown("# Model Response Evaluator")
|
296 |
+
gr.Markdown("Upload a CSV file with prompts and model responses to evaluate and benchmark models.")
|
297 |
|
298 |
+
with gr.Row():
|
299 |
+
gemini_api_key = gr.Textbox(label="Gemini API Key", type="password")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
+
with gr.Row():
|
302 |
+
csv_file = gr.File(label="Upload CSV with responses")
|
303 |
+
prompt_col = gr.Textbox(label="Prompt Column Name", value="rus_prompt")
|
304 |
+
models_input = gr.Textbox(label="Model names (comma-separated, leave blank for auto-detection)")
|
|
|
|
|
|
|
|
|
305 |
|
306 |
+
evaluate_btn = gr.Button("Run Benchmark")
|
307 |
+
|
308 |
+
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
benchmark_output = gr.DataFrame(label="Benchmark Results")
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
+
def evaluate_batch(api_key, file, prompt_column, models_text):
|
312 |
+
try:
|
313 |
+
# Load the CSV file
|
314 |
+
file_path = file.name
|
315 |
+
df = pd.read_csv(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
+
# Process model names if provided
|
318 |
+
models = None
|
319 |
+
if models_text.strip():
|
320 |
+
models = [m.strip() for m in models_text.split(',')]
|
321 |
+
|
322 |
+
# Run the evaluation
|
323 |
+
evaluator = BenchmarkEvaluator(api_key)
|
324 |
+
results = evaluator.evaluate_all_models(df, models, prompt_column)
|
325 |
+
|
326 |
+
return results
|
327 |
+
except Exception as e:
|
328 |
+
return pd.DataFrame({'Error': [str(e)]})
|
329 |
+
|
330 |
+
evaluate_btn.click(
|
331 |
+
evaluate_batch,
|
332 |
+
inputs=[gemini_api_key, csv_file, prompt_col, models_input],
|
333 |
+
outputs=benchmark_output
|
334 |
+
)
|
335 |
+
|
336 |
return app
|
337 |
|
338 |
|
339 |
def main():
|
|
|
340 |
app = create_gradio_interface()
|
341 |
app.launch(share=True)
|
342 |
|