Spaces:
Sleeping
Sleeping
File size: 14,056 Bytes
4cc0ea8 33b3cd8 4cc0ea8 33b3cd8 4cc0ea8 33b3cd8 4cc0ea8 33b3cd8 4cc0ea8 33b3cd8 4cc0ea8 33b3cd8 4cc0ea8 33b3cd8 4cc0ea8 33b3cd8 4cc0ea8 33b3cd8 4cc0ea8 33b3cd8 4cc0ea8 33b3cd8 4cc0ea8 33b3cd8 4cc0ea8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import os
import re
import json
import time
import tempfile
from typing import Dict, Any, List, Optional
from transformers import AutoTokenizer
from sentence_transformers import SentenceTransformer
from huggingface_hub import login
from src.prompts import SYSTEM_PROMPT
# Define the prompt templates directly in this file since they're referenced but missing
SUMMARY_PROMPT_TEMPLATE = """You are an expert content analyst specialized in creating professional, actionable summaries of educational content.
Please analyze the following text to create a comprehensive yet concise summary that will be valuable to readers. Break down the content into 2-3 meaningful segments, each focused on a key topic or theme.
For each segment of the content, provide:
1. A descriptive topic name
2. 3-5 key concepts or terms that are central to understanding this segment
3. A concise summary paragraph (3-5 sentences) that captures the essential information
The text to analyze is:
{text}
FORMAT YOUR RESPONSE STRICTLY AS A JSON OBJECT AS FOLLOWS (with no other text, explanation or formatting):
{
"segments": [
{
"topic_name": "Title for the first segment",
"key_concepts": ["Key concept 1", "Key concept 2", "Key concept 3"],
"summary": "Concise summary paragraph for this segment that captures the essential information."
},
{
"topic_name": "Title for the second segment",
"key_concepts": ["Key concept 1", "Key concept 2", "Key concept 3"],
"summary": "Concise summary paragraph for this segment that captures the essential information."
}
]
}"""
QUIZ_PROMPT_TEMPLATE = """You are an expert quiz creator specialized in creating educational assessments.
Please analyze the following text and create 5 multiple-choice quiz questions that test understanding of the key concepts and information presented in the text. For each question:
1. Write a clear, concise question
2. Create 4 answer options (A, B, C, D) with exactly one correct answer
The text to analyze is:
{text}
FORMAT YOUR RESPONSE STRICTLY AS A JSON OBJECT AS FOLLOWS (with no other text, explanation or formatting):
{
"quiz_questions": [
{
"question": "The full text of the question?",
"options": [
{ "text": "First option text", "correct": false },
{ "text": "Second option text", "correct": true },
{ "text": "Third option text", "correct": false },
{ "text": "Fourth option text", "correct": false }
]
}
]
}"""
GEMINI_MODEL = "gemini-2.0-flash"
DEFAULT_TEMPERATURE = 0.7
TOKENIZER_MODEL = "answerdotai/ModernBERT-base"
SENTENCE_TRANSFORMER_MODEL = "all-MiniLM-L6-v2"
hf_token = os.environ.get('HF_TOKEN', None)
login(token=hf_token)
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_MODEL)
sentence_model = SentenceTransformer(SENTENCE_TRANSFORMER_MODEL)
def clean_text(text):
text = re.sub(r'\[speaker_\d+\]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def split_text_by_tokens(text, max_tokens=12000):
text = clean_text(text)
tokens = tokenizer.encode(text)
if len(tokens) <= max_tokens:
return [text]
split_point = len(tokens) // 2
sentences = re.split(r'(?<=[.!?])\s+', text)
first_half = []
second_half = []
current_tokens = 0
for sentence in sentences:
sentence_tokens = len(tokenizer.encode(sentence))
if current_tokens + sentence_tokens <= split_point:
first_half.append(sentence)
current_tokens += sentence_tokens
else:
second_half.append(sentence)
return [" ".join(first_half), " ".join(second_half)]
def generate_with_gemini(text, api_key, language, content_type="summary"):
from langchain_google_genai import ChatGoogleGenerativeAI
os.environ["GOOGLE_API_KEY"] = api_key
llm = ChatGoogleGenerativeAI(
model=GEMINI_MODEL,
temperature=DEFAULT_TEMPERATURE,
max_retries=3
)
if content_type == "summary":
base_prompt = SUMMARY_PROMPT_TEMPLATE.format(text=text)
else:
base_prompt = QUIZ_PROMPT_TEMPLATE.format(text=text)
language_instruction = f"\nIMPORTANT: Generate ALL content in {language} language."
prompt = base_prompt + language_instruction
try:
messages = [
{"role": "system", "content": "You are a helpful AI assistant that creates high-quality text summaries and quizzes."},
{"role": "user", "content": prompt}
]
response = llm.invoke(messages)
try:
content = response.content
# First try to find JSON within code blocks
json_match = re.search(r'```(?:json)?\s*([\s\S]*?)\s*```', content)
if json_match:
json_str = json_match.group(1)
else:
# Then try to find JSON with curly braces
json_match = re.search(r'(\{[\s\S]*\})', content)
if json_match:
json_str = json_match.group(1)
else:
# If we still don't have JSON, try to clean and parse the content directly
json_str = content
# Clean up the JSON string
json_str = json_str.strip()
# Try to parse the JSON
try:
function_call = json.loads(json_str)
return function_call
except json.JSONDecodeError:
# If direct parsing fails, try to fix common issues
# Remove markdown formatting or extra text
cleaned_json = re.sub(r'^[^{]*', '', json_str)
cleaned_json = re.sub(r'[^}]*$', '', cleaned_json)
return json.loads(cleaned_json)
except json.JSONDecodeError as e:
# Fall back to a default structure
if content_type == "summary":
return {
"segments": [
{
"topic_name": "Content Analysis",
"key_concepts": ["AI Processing", "Text Analysis"],
"summary": "The model was unable to produce a properly formatted JSON response. Please try again with a different text sample."
}
]
}
else:
return {
"quiz_questions": [
{
"question": "Unable to generate quiz questions from the provided text.",
"options": [
{"text": "Try again", "correct": true},
{"text": "Use different text", "correct": false},
{"text": "Adjust the prompt", "correct": false},
{"text": "Contact support", "correct": false}
]
}
]
}
except Exception as e:
raise Exception(f"Error calling API: {str(e)}")
def format_summary_for_display(results, language="English"):
output = []
if language == "Uzbek":
segment_header = "QISM"
key_concepts_header = "ASOSIY TUSHUNCHALAR"
summary_header = "QISQACHA MAZMUN"
elif language == "Russian":
segment_header = "СЕГМЕНТ"
key_concepts_header = "КЛЮЧЕВЫЕ ПОНЯТИЯ"
summary_header = "КРАТКОЕ СОДЕРЖАНИЕ"
else:
segment_header = "SEGMENT"
key_concepts_header = "KEY CONCEPTS"
summary_header = "SUMMARY"
segments = results.get("segments", [])
if not segments:
return "No segments were generated. Please try again with a different text sample."
for i, segment in enumerate(segments):
topic = segment["topic_name"]
segment_num = i + 1
output.append(f"\n\n{'='*40}")
output.append(f"{segment_header} {segment_num}: {topic}")
output.append(f"{'='*40}\n")
output.append(f"{key_concepts_header}:")
for concept in segment["key_concepts"]:
output.append(f"• {concept}")
output.append(f"\n{summary_header}:")
output.append(segment["summary"])
return "\n".join(output)
def format_quiz_for_display(results, language="English"):
output = []
if language == "Uzbek":
quiz_questions_header = "TEST SAVOLLARI"
elif language == "Russian":
quiz_questions_header = "ТЕСТОВЫЕ ВОПРОСЫ"
else:
quiz_questions_header = "QUIZ QUESTIONS"
output.append(f"{'='*40}")
output.append(f"{quiz_questions_header}")
output.append(f"{'='*40}\n")
quiz_questions = results.get("quiz_questions", [])
if not quiz_questions:
return "No quiz questions were generated. Please try again with a different text sample."
for i, q in enumerate(quiz_questions):
output.append(f"\n{i+1}. {q['question']}")
for j, option in enumerate(q['options']):
letter = chr(97 + j).upper()
correct_marker = " ✓" if option["correct"] else ""
output.append(f" {letter}. {option['text']}{correct_marker}")
return "\n".join(output)
def analyze_document(text, gemini_api_key, language, content_type="summary"):
try:
if not text or len(text.strip()) < 100:
return "Error: Text is too short to analyze. Please provide a longer text sample.", None, None
start_time = time.time()
text_parts = split_text_by_tokens(text)
input_tokens = 0
output_tokens = 0
if content_type == "summary":
all_results = {"segments": []}
segment_counter = 1
for part in text_parts:
actual_prompt = SUMMARY_PROMPT_TEMPLATE.format(text=part)
prompt_tokens = len(tokenizer.encode(actual_prompt))
input_tokens += prompt_tokens
analysis = generate_with_gemini(part, gemini_api_key, language, "summary")
if "segments" in analysis and analysis["segments"]:
for segment in analysis["segments"]:
segment["segment_number"] = segment_counter
all_results["segments"].append(segment)
segment_counter += 1
else:
# Add a default segment if none were returned
all_results["segments"].append({
"segment_number": segment_counter,
"topic_name": "Content Analysis",
"key_concepts": ["Text Processing", "AI Analysis", "Document Summarization"],
"summary": "The system was unable to generate detailed segments from this text portion. This may be due to the complexity of the content or formatting issues. Consider breaking the text into smaller, more focused sections."
})
segment_counter += 1
formatted_output = format_summary_for_display(all_results, language)
else: # Quiz generation
all_results = {"quiz_questions": []}
for part in text_parts:
actual_prompt = QUIZ_PROMPT_TEMPLATE.format(text=part)
prompt_tokens = len(tokenizer.encode(actual_prompt))
input_tokens += prompt_tokens
analysis = generate_with_gemini(part, gemini_api_key, language, "quiz")
if "quiz_questions" in analysis and analysis["quiz_questions"]:
remaining_slots = 10 - len(all_results["quiz_questions"])
if remaining_slots > 0:
questions_to_add = analysis["quiz_questions"][:remaining_slots]
all_results["quiz_questions"].extend(questions_to_add)
else:
# Add a default question if none were returned
if len(all_results["quiz_questions"]) < 10:
all_results["quiz_questions"].append({
"question": "What is the main purpose of text analysis in educational contexts?",
"options": [
{"text": "To change the original meaning of the text", "correct": False},
{"text": "To extract key concepts and facilitate understanding", "correct": True},
{"text": "To reduce text to exactly half its original length", "correct": False},
{"text": "To eliminate all technical terminology", "correct": False}
]
})
formatted_output = format_quiz_for_display(all_results, language)
end_time = time.time()
total_time = end_time - start_time
output_tokens = len(tokenizer.encode(formatted_output))
token_info = f"Input tokens: {input_tokens}\nOutput tokens: {output_tokens}\nTotal tokens: {input_tokens + output_tokens}\n"
formatted_text = f"Total Processing time: {total_time:.2f}s\n{token_info}\n" + formatted_output
json_path = tempfile.mktemp(suffix='.json')
with open(json_path, 'w', encoding='utf-8') as json_file:
json.dump(all_results, json_file, indent=2)
txt_path = tempfile.mktemp(suffix='.txt')
with open(txt_path, 'w', encoding='utf-8') as txt_file:
txt_file.write(formatted_text)
return formatted_text, json_path, txt_path
except Exception as e:
error_message = f"Error processing document: {str(e)}"
return error_message, None, None |