File size: 14,056 Bytes
4cc0ea8
 
 
 
 
 
 
 
 
33b3cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc0ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33b3cd8
 
4cc0ea8
 
 
 
33b3cd8
4cc0ea8
 
 
 
33b3cd8
4cc0ea8
 
33b3cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc0ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33b3cd8
 
 
4cc0ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33b3cd8
 
 
4cc0ea8
 
 
 
 
 
 
 
 
 
 
33b3cd8
 
 
4cc0ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33b3cd8
4cc0ea8
 
 
 
33b3cd8
 
 
 
 
 
 
 
 
4cc0ea8
 
 
 
 
 
 
 
 
 
 
 
 
33b3cd8
4cc0ea8
 
 
 
33b3cd8
 
 
 
 
 
 
 
 
 
 
 
4cc0ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import os
import re
import json
import time
import tempfile
from typing import Dict, Any, List, Optional
from transformers import AutoTokenizer
from sentence_transformers import SentenceTransformer
from huggingface_hub import login
from src.prompts import SYSTEM_PROMPT

# Define the prompt templates directly in this file since they're referenced but missing
SUMMARY_PROMPT_TEMPLATE = """You are an expert content analyst specialized in creating professional, actionable summaries of educational content.

Please analyze the following text to create a comprehensive yet concise summary that will be valuable to readers. Break down the content into 2-3 meaningful segments, each focused on a key topic or theme.

For each segment of the content, provide:
1. A descriptive topic name
2. 3-5 key concepts or terms that are central to understanding this segment
3. A concise summary paragraph (3-5 sentences) that captures the essential information

The text to analyze is:
{text}

FORMAT YOUR RESPONSE STRICTLY AS A JSON OBJECT AS FOLLOWS (with no other text, explanation or formatting):
{
  "segments": [
    {
      "topic_name": "Title for the first segment",
      "key_concepts": ["Key concept 1", "Key concept 2", "Key concept 3"],
      "summary": "Concise summary paragraph for this segment that captures the essential information."
    },
    {
      "topic_name": "Title for the second segment",
      "key_concepts": ["Key concept 1", "Key concept 2", "Key concept 3"],
      "summary": "Concise summary paragraph for this segment that captures the essential information."
    }
  ]
}"""

QUIZ_PROMPT_TEMPLATE = """You are an expert quiz creator specialized in creating educational assessments.

Please analyze the following text and create 5 multiple-choice quiz questions that test understanding of the key concepts and information presented in the text. For each question:
1. Write a clear, concise question
2. Create 4 answer options (A, B, C, D) with exactly one correct answer

The text to analyze is:
{text}

FORMAT YOUR RESPONSE STRICTLY AS A JSON OBJECT AS FOLLOWS (with no other text, explanation or formatting):
{
  "quiz_questions": [
    {
      "question": "The full text of the question?",
      "options": [
        { "text": "First option text", "correct": false },
        { "text": "Second option text", "correct": true },
        { "text": "Third option text", "correct": false },
        { "text": "Fourth option text", "correct": false }
      ]
    }
  ]
}"""

GEMINI_MODEL = "gemini-2.0-flash"
DEFAULT_TEMPERATURE = 0.7

TOKENIZER_MODEL = "answerdotai/ModernBERT-base"
SENTENCE_TRANSFORMER_MODEL = "all-MiniLM-L6-v2"

hf_token = os.environ.get('HF_TOKEN', None)
login(token=hf_token)

tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_MODEL)
sentence_model = SentenceTransformer(SENTENCE_TRANSFORMER_MODEL)

def clean_text(text):
    text = re.sub(r'\[speaker_\d+\]', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text

def split_text_by_tokens(text, max_tokens=12000):
    text = clean_text(text)
    tokens = tokenizer.encode(text)
    
    if len(tokens) <= max_tokens:
        return [text]
    
    split_point = len(tokens) // 2
    
    sentences = re.split(r'(?<=[.!?])\s+', text)
    
    first_half = []
    second_half = []
    
    current_tokens = 0
    for sentence in sentences:
        sentence_tokens = len(tokenizer.encode(sentence))
        
        if current_tokens + sentence_tokens <= split_point:
            first_half.append(sentence)
            current_tokens += sentence_tokens
        else:
            second_half.append(sentence)
    
    return [" ".join(first_half), " ".join(second_half)]

def generate_with_gemini(text, api_key, language, content_type="summary"):
    from langchain_google_genai import ChatGoogleGenerativeAI
    os.environ["GOOGLE_API_KEY"] = api_key
    llm = ChatGoogleGenerativeAI(
        model=GEMINI_MODEL,
        temperature=DEFAULT_TEMPERATURE,
        max_retries=3
    )
    
    if content_type == "summary":
        base_prompt = SUMMARY_PROMPT_TEMPLATE.format(text=text)
    else:
        base_prompt = QUIZ_PROMPT_TEMPLATE.format(text=text)

    language_instruction = f"\nIMPORTANT: Generate ALL content in {language} language."
    prompt = base_prompt + language_instruction
    
    try:
        messages = [
            {"role": "system", "content": "You are a helpful AI assistant that creates high-quality text summaries and quizzes."},
            {"role": "user", "content": prompt}
        ]
        
        response = llm.invoke(messages)
        
        try:
            content = response.content
            # First try to find JSON within code blocks
            json_match = re.search(r'```(?:json)?\s*([\s\S]*?)\s*```', content)
            
            if json_match:
                json_str = json_match.group(1)
            else:
                # Then try to find JSON with curly braces 
                json_match = re.search(r'(\{[\s\S]*\})', content)
                if json_match:
                    json_str = json_match.group(1)
                else:
                    # If we still don't have JSON, try to clean and parse the content directly
                    json_str = content
            
            # Clean up the JSON string
            json_str = json_str.strip()
            
            # Try to parse the JSON
            try:
                function_call = json.loads(json_str)
                return function_call
            except json.JSONDecodeError:
                # If direct parsing fails, try to fix common issues
                # Remove markdown formatting or extra text
                cleaned_json = re.sub(r'^[^{]*', '', json_str)
                cleaned_json = re.sub(r'[^}]*$', '', cleaned_json)
                return json.loads(cleaned_json)
                
        except json.JSONDecodeError as e:
            # Fall back to a default structure
            if content_type == "summary":
                return {
                    "segments": [
                        {
                            "topic_name": "Content Analysis",
                            "key_concepts": ["AI Processing", "Text Analysis"],
                            "summary": "The model was unable to produce a properly formatted JSON response. Please try again with a different text sample."
                        }
                    ]
                }
            else:
                return {
                    "quiz_questions": [
                        {
                            "question": "Unable to generate quiz questions from the provided text.",
                            "options": [
                                {"text": "Try again", "correct": true},
                                {"text": "Use different text", "correct": false},
                                {"text": "Adjust the prompt", "correct": false},
                                {"text": "Contact support", "correct": false}
                            ]
                        }
                    ]
                }
    except Exception as e:
        raise Exception(f"Error calling API: {str(e)}")

def format_summary_for_display(results, language="English"):
    output = []
    
    if language == "Uzbek":
        segment_header = "QISM"
        key_concepts_header = "ASOSIY TUSHUNCHALAR"
        summary_header = "QISQACHA MAZMUN"
    elif language == "Russian":
        segment_header = "СЕГМЕНТ"
        key_concepts_header = "КЛЮЧЕВЫЕ ПОНЯТИЯ"
        summary_header = "КРАТКОЕ СОДЕРЖАНИЕ"
    else:
        segment_header = "SEGMENT"
        key_concepts_header = "KEY CONCEPTS"
        summary_header = "SUMMARY"
    
    segments = results.get("segments", [])
    if not segments:
        return "No segments were generated. Please try again with a different text sample."
        
    for i, segment in enumerate(segments):
        topic = segment["topic_name"]
        segment_num = i + 1 
        output.append(f"\n\n{'='*40}")
        output.append(f"{segment_header} {segment_num}: {topic}")
        output.append(f"{'='*40}\n")
        output.append(f"{key_concepts_header}:")
        for concept in segment["key_concepts"]:
            output.append(f"• {concept}")
        output.append(f"\n{summary_header}:")
        output.append(segment["summary"])
    
    return "\n".join(output)

def format_quiz_for_display(results, language="English"):
    output = []
    
    if language == "Uzbek":
        quiz_questions_header = "TEST SAVOLLARI"
    elif language == "Russian":
        quiz_questions_header = "ТЕСТОВЫЕ ВОПРОСЫ"
    else:
        quiz_questions_header = "QUIZ QUESTIONS"
    
    output.append(f"{'='*40}")
    output.append(f"{quiz_questions_header}")
    output.append(f"{'='*40}\n")
    
    quiz_questions = results.get("quiz_questions", [])
    if not quiz_questions:
        return "No quiz questions were generated. Please try again with a different text sample."
        
    for i, q in enumerate(quiz_questions):
        output.append(f"\n{i+1}. {q['question']}")
        for j, option in enumerate(q['options']):
            letter = chr(97 + j).upper()
            correct_marker = " ✓" if option["correct"] else ""
            output.append(f"   {letter}. {option['text']}{correct_marker}")
    
    return "\n".join(output)

def analyze_document(text, gemini_api_key, language, content_type="summary"):
    try:
        if not text or len(text.strip()) < 100:
            return "Error: Text is too short to analyze. Please provide a longer text sample.", None, None
            
        start_time = time.time()
        text_parts = split_text_by_tokens(text)

        input_tokens = 0        
        output_tokens = 0
        
        if content_type == "summary":
            all_results = {"segments": []}
            segment_counter = 1
            
            for part in text_parts:
                actual_prompt = SUMMARY_PROMPT_TEMPLATE.format(text=part)
                prompt_tokens = len(tokenizer.encode(actual_prompt))
                input_tokens += prompt_tokens
                
                analysis = generate_with_gemini(part, gemini_api_key, language, "summary")
                
                if "segments" in analysis and analysis["segments"]:
                    for segment in analysis["segments"]:
                        segment["segment_number"] = segment_counter
                        all_results["segments"].append(segment)
                        segment_counter += 1
                else:
                    # Add a default segment if none were returned
                    all_results["segments"].append({
                        "segment_number": segment_counter,
                        "topic_name": "Content Analysis",
                        "key_concepts": ["Text Processing", "AI Analysis", "Document Summarization"],
                        "summary": "The system was unable to generate detailed segments from this text portion. This may be due to the complexity of the content or formatting issues. Consider breaking the text into smaller, more focused sections."
                    })
                    segment_counter += 1
            
            formatted_output = format_summary_for_display(all_results, language)
            
        else:  # Quiz generation
            all_results = {"quiz_questions": []}
            
            for part in text_parts:
                actual_prompt = QUIZ_PROMPT_TEMPLATE.format(text=part)
                prompt_tokens = len(tokenizer.encode(actual_prompt))
                input_tokens += prompt_tokens
                
                analysis = generate_with_gemini(part, gemini_api_key, language, "quiz")
                
                if "quiz_questions" in analysis and analysis["quiz_questions"]:
                    remaining_slots = 10 - len(all_results["quiz_questions"])
                    if remaining_slots > 0:
                        questions_to_add = analysis["quiz_questions"][:remaining_slots]
                        all_results["quiz_questions"].extend(questions_to_add)
                else:
                    # Add a default question if none were returned
                    if len(all_results["quiz_questions"]) < 10:
                        all_results["quiz_questions"].append({
                            "question": "What is the main purpose of text analysis in educational contexts?",
                            "options": [
                                {"text": "To change the original meaning of the text", "correct": False},
                                {"text": "To extract key concepts and facilitate understanding", "correct": True},
                                {"text": "To reduce text to exactly half its original length", "correct": False},
                                {"text": "To eliminate all technical terminology", "correct": False}
                            ]
                        })
            
            formatted_output = format_quiz_for_display(all_results, language)
        
        end_time = time.time()
        total_time = end_time - start_time
        
        output_tokens = len(tokenizer.encode(formatted_output))
        token_info = f"Input tokens: {input_tokens}\nOutput tokens: {output_tokens}\nTotal tokens: {input_tokens + output_tokens}\n"
        formatted_text = f"Total Processing time: {total_time:.2f}s\n{token_info}\n" + formatted_output

        json_path = tempfile.mktemp(suffix='.json')
        with open(json_path, 'w', encoding='utf-8') as json_file:
            json.dump(all_results, json_file, indent=2)
        
        txt_path = tempfile.mktemp(suffix='.txt')
        with open(txt_path, 'w', encoding='utf-8') as txt_file:
            txt_file.write(formatted_text)
            
        return formatted_text, json_path, txt_path
    except Exception as e:
        error_message = f"Error processing document: {str(e)}"
        return error_message, None, None