Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import logging
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import faiss
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import requests
|
| 8 |
+
from geopy.geocoders import Nominatim
|
| 9 |
+
from sentence_transformers import SentenceTransformer
|
| 10 |
+
from typing import Tuple, Optional
|
| 11 |
+
import os
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
import geonamescache
|
| 14 |
+
|
| 15 |
+
logging.basicConfig(level=logging.INFO)
|
| 16 |
+
|
| 17 |
+
from huggingface_hub import login
|
| 18 |
+
|
| 19 |
+
token = os.getenv('HF_TOKEN')
|
| 20 |
+
|
| 21 |
+
df_path = hf_hub_download(
|
| 22 |
+
repo_id='MrSimple07/raggg',
|
| 23 |
+
filename='15_rag_data.csv',
|
| 24 |
+
repo_type='dataset',
|
| 25 |
+
token = token
|
| 26 |
+
)
|
| 27 |
+
embeddings_path = hf_hub_download(
|
| 28 |
+
repo_id='MrSimple07/raggg',
|
| 29 |
+
filename='rag_embeddings.npy',
|
| 30 |
+
repo_type='dataset',
|
| 31 |
+
token = token
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
df = pd.read_csv(df_path)
|
| 35 |
+
embeddings = np.load(embeddings_path)
|
| 36 |
+
|
| 37 |
+
MISTRAL_API_KEY = "TeX7Cs30zMCAi0A90w4pGhPbOGrYzQkj"
|
| 38 |
+
MISTRAL_API_URL = "https://api.mistral.ai/v1/chat/completions"
|
| 39 |
+
|
| 40 |
+
category_synonyms = {
|
| 41 |
+
"museum": [
|
| 42 |
+
"museums", "art galleries", "natural museums", "modern art museums"
|
| 43 |
+
],
|
| 44 |
+
"cafe": [
|
| 45 |
+
"coffee shops", ""
|
| 46 |
+
],
|
| 47 |
+
"restaurant": [
|
| 48 |
+
"local dining spots", "fine dining", "casual eateries",
|
| 49 |
+
"family-friendly restaurants", "street food places"
|
| 50 |
+
],
|
| 51 |
+
"parks": [
|
| 52 |
+
"national parks", "urban green spaces", "botanical gardens",
|
| 53 |
+
"recreational parks", "wildlife reserves"
|
| 54 |
+
],
|
| 55 |
+
"park": [
|
| 56 |
+
"national parks", "urban green spaces", "botanical gardens",
|
| 57 |
+
"recreational parks", "wildlife reserves"
|
| 58 |
+
],
|
| 59 |
+
"spa": ['bath', 'swimming', 'pool']
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
def extract_location_geonames(query: str) -> dict:
|
| 63 |
+
gc = geonamescache.GeonamesCache()
|
| 64 |
+
countries = {c['name'].lower(): c['name'] for c in gc.get_countries().values()}
|
| 65 |
+
cities = {c['name'].lower(): c['name'] for c in gc.get_cities().values()}
|
| 66 |
+
|
| 67 |
+
words = query.split()
|
| 68 |
+
|
| 69 |
+
for i in range(len(words)):
|
| 70 |
+
for j in range(i+1, len(words)+1):
|
| 71 |
+
potential_location = ' '.join(words[i:j]).lower()
|
| 72 |
+
|
| 73 |
+
# Check if it's a city first
|
| 74 |
+
if potential_location in cities:
|
| 75 |
+
return {
|
| 76 |
+
'city': cities[potential_location],
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
# Then check if it's a country
|
| 80 |
+
if potential_location in countries:
|
| 81 |
+
return {
|
| 82 |
+
'city': ' '.join(words[:i] + words[j:]) if i+j < len(words) else None,
|
| 83 |
+
'country': countries[potential_location]
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
return {'city': query}
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def expand_category_once(query, target_category):
|
| 91 |
+
"""
|
| 92 |
+
Expand the target category term in absthe query only once with synonyms and related phrases.
|
| 93 |
+
"""
|
| 94 |
+
target_lower = target_category.lower()
|
| 95 |
+
if target_lower in query.lower():
|
| 96 |
+
synonyms = category_synonyms.get(target_lower, [])
|
| 97 |
+
if synonyms:
|
| 98 |
+
expanded_term = f"{target_category} ({', '.join(synonyms)})"
|
| 99 |
+
query = query.replace(target_category, expanded_term, 1) # Replace only the first occurrence
|
| 100 |
+
return query
|
| 101 |
+
|
| 102 |
+
CATEGORY_FILTER_WORDS = [
|
| 103 |
+
'museum', 'art', 'gallery', 'tourism', 'historical',
|
| 104 |
+
'bar', 'cafe', 'restaurant', 'park', 'landmark',
|
| 105 |
+
'beach', 'mountain', 'theater', 'church', 'monument',
|
| 106 |
+
'garden', 'library', 'university', 'shopping', 'market',
|
| 107 |
+
'hotel', 'resort', 'cultural', 'natural', 'science',
|
| 108 |
+
'educational', 'entertainment', 'sports', 'memorial', 'historic',
|
| 109 |
+
'spa', 'landmarks', 'sleep', 'coffee shops', 'shops', 'buildings',
|
| 110 |
+
'gothic', 'castle', 'fortress', 'aquarium', 'zoo', 'wildlife',
|
| 111 |
+
'adventure', 'hiking', 'lighthouse', 'vineyard', 'brewery',
|
| 112 |
+
'winery', 'pub', 'nightclub', 'observatory', 'theme park',
|
| 113 |
+
'botanical', 'sanctuary', 'heritage', 'island', 'waterfall',
|
| 114 |
+
'canyon', 'valley', 'desert', 'artisans', 'crafts', 'music hall',
|
| 115 |
+
'dance clubs', 'opera house', 'skyscraper', 'bridge', 'fountain',
|
| 116 |
+
'temple', 'shrine', 'archaeological', 'planetarium', 'marketplace',
|
| 117 |
+
'street art', 'local cuisine', 'eco-tourism', 'carnival', 'festival', 'film'
|
| 118 |
+
]
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def extract_category_from_query(query: str) -> Optional[str]:
|
| 122 |
+
query_lower = query.lower()
|
| 123 |
+
for word in CATEGORY_FILTER_WORDS:
|
| 124 |
+
if word in query_lower:
|
| 125 |
+
return word
|
| 126 |
+
|
| 127 |
+
return None
|
| 128 |
+
|
| 129 |
+
def get_location_details(min_lat, max_lat, min_lon, max_lon):
|
| 130 |
+
"""Get detailed location information for a bounding box with improved city detection and error handling"""
|
| 131 |
+
geolocator = Nominatim(user_agent="location_finder", timeout=10)
|
| 132 |
+
|
| 133 |
+
try:
|
| 134 |
+
# Strategy 1: Try multiple points within the bounding box
|
| 135 |
+
sample_points = [
|
| 136 |
+
((float(min_lat) + float(max_lat)) / 2,
|
| 137 |
+
(float(min_lon) + float(max_lon)) / 2),
|
| 138 |
+
(float(min_lat), float(min_lon)),
|
| 139 |
+
(float(max_lat), float(min_lon)),
|
| 140 |
+
(float(min_lat), float(max_lon)),
|
| 141 |
+
(float(max_lat), float(max_lon))
|
| 142 |
+
]
|
| 143 |
+
|
| 144 |
+
# Collect unique cities from all points
|
| 145 |
+
cities = set()
|
| 146 |
+
full_addresses = []
|
| 147 |
+
|
| 148 |
+
for lat, lon in sample_points:
|
| 149 |
+
try:
|
| 150 |
+
# Add multiple retry attempts with exponential backoff
|
| 151 |
+
for attempt in range(3):
|
| 152 |
+
try:
|
| 153 |
+
location = geolocator.reverse(f"{lat}, {lon}", language='en')
|
| 154 |
+
break
|
| 155 |
+
except Exception as retry_error:
|
| 156 |
+
if attempt == 2: # Last attempt
|
| 157 |
+
print(f"Failed to retrieve location for {lat}, {lon} after 3 attempts")
|
| 158 |
+
continue
|
| 159 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
| 160 |
+
|
| 161 |
+
if location:
|
| 162 |
+
address = location.raw.get('address', {})
|
| 163 |
+
|
| 164 |
+
# Extract city with multiple fallback options
|
| 165 |
+
city = (
|
| 166 |
+
address.get('city') or
|
| 167 |
+
address.get('town') or
|
| 168 |
+
address.get('municipality') or
|
| 169 |
+
address.get('county') or
|
| 170 |
+
address.get('state')
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
if city:
|
| 174 |
+
cities.add(city)
|
| 175 |
+
full_addresses.append(location.address)
|
| 176 |
+
|
| 177 |
+
except Exception as point_error:
|
| 178 |
+
print(f"Error processing point {lat}, {lon}: {point_error}")
|
| 179 |
+
continue
|
| 180 |
+
|
| 181 |
+
# If no cities found, try alternative geocoding service or return default
|
| 182 |
+
if not cities:
|
| 183 |
+
print("No cities detected. Returning default location information.")
|
| 184 |
+
return {
|
| 185 |
+
'location_parts': [],
|
| 186 |
+
'full_address_parts': '',
|
| 187 |
+
'full_address': '',
|
| 188 |
+
'city': [],
|
| 189 |
+
'state': '',
|
| 190 |
+
'country': '',
|
| 191 |
+
'cities_or_query': ''
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
# Prioritize cities, keeping all detected cities
|
| 195 |
+
city_list = list(cities)
|
| 196 |
+
|
| 197 |
+
# Use the last processed address for state and country
|
| 198 |
+
state = address.get('state', '')
|
| 199 |
+
country = address.get('country', '')
|
| 200 |
+
|
| 201 |
+
# Create a formatted list of cities for query
|
| 202 |
+
cities_or_query = " or ".join(city_list)
|
| 203 |
+
|
| 204 |
+
location_parts = [part for part in [cities_or_query, state, country] if part]
|
| 205 |
+
full_address_parts = ', '.join(location_parts)
|
| 206 |
+
|
| 207 |
+
print(f"Detected Cities: {cities}")
|
| 208 |
+
print(f"Cities for Query: {cities_or_query}")
|
| 209 |
+
print(f"Full Address Parts: {full_address_parts}")
|
| 210 |
+
|
| 211 |
+
return {
|
| 212 |
+
'location_parts': city_list,
|
| 213 |
+
'full_address_parts': full_address_parts,
|
| 214 |
+
'full_address': full_addresses[0] if full_addresses else '',
|
| 215 |
+
'city': city_list,
|
| 216 |
+
'state': state,
|
| 217 |
+
'country': country,
|
| 218 |
+
'cities_or_query': cities_or_query
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
except Exception as e:
|
| 222 |
+
print(f"Comprehensive error in location details retrieval: {e}")
|
| 223 |
+
import traceback
|
| 224 |
+
traceback.print_exc()
|
| 225 |
+
|
| 226 |
+
return None
|
| 227 |
+
|
| 228 |
+
def rag_query(
|
| 229 |
+
query: str,
|
| 230 |
+
df: pd.DataFrame,
|
| 231 |
+
model: SentenceTransformer,
|
| 232 |
+
precomputed_embeddings: np.ndarray,
|
| 233 |
+
index: faiss.IndexFlatL2,
|
| 234 |
+
min_lat: str = None,
|
| 235 |
+
max_lat: str = None,
|
| 236 |
+
min_lon: str = None,
|
| 237 |
+
max_lon: str = None,
|
| 238 |
+
category: str = None,
|
| 239 |
+
city: str = None,
|
| 240 |
+
) -> Tuple[str, str]:
|
| 241 |
+
"""Enhanced RAG function with prioritized location extraction"""
|
| 242 |
+
print("\n=== Starting RAG Query ===")
|
| 243 |
+
print(f"Initial DataFrame size: {len(df)}")
|
| 244 |
+
|
| 245 |
+
# Prioritized location extraction
|
| 246 |
+
location_info = None
|
| 247 |
+
location_names = []
|
| 248 |
+
|
| 249 |
+
# Priority 1: Explicitly provided city name
|
| 250 |
+
if city:
|
| 251 |
+
location_names = [city]
|
| 252 |
+
print(f"Using explicitly provided city: {city}")
|
| 253 |
+
|
| 254 |
+
# Priority 2: Coordinates (Nominatim)
|
| 255 |
+
elif all(coord is not None and coord != "" for coord in [min_lat, max_lat, min_lon, max_lon]):
|
| 256 |
+
try:
|
| 257 |
+
location_info = get_location_details(
|
| 258 |
+
float(min_lat),
|
| 259 |
+
float(max_lat),
|
| 260 |
+
float(min_lon),
|
| 261 |
+
float(max_lon)
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# Extract location names from Nominatim result
|
| 265 |
+
if location_info:
|
| 266 |
+
if location_info.get('city'):
|
| 267 |
+
location_names.extend(location_info['city'] if isinstance(location_info['city'], list) else [location_info['city']])
|
| 268 |
+
if location_info.get('state'):
|
| 269 |
+
location_names.append(location_info['state'])
|
| 270 |
+
if location_info.get('country'):
|
| 271 |
+
location_names.append(location_info['country'])
|
| 272 |
+
|
| 273 |
+
print(f"Using coordinates-based location: {location_names}")
|
| 274 |
+
except Exception as e:
|
| 275 |
+
print(f"Location details error: {e}")
|
| 276 |
+
|
| 277 |
+
# Priority 3: Extract from query using GeoNames only if no previous methods worked
|
| 278 |
+
if not location_names:
|
| 279 |
+
geonames_info = extract_location_geonames(query)
|
| 280 |
+
if geonames_info.get('city'):
|
| 281 |
+
location_names = [geonames_info['city']]
|
| 282 |
+
print(f"Using GeoNames-extracted city: {location_names}")
|
| 283 |
+
|
| 284 |
+
# Start with a copy of the original DataFrame
|
| 285 |
+
filtered_df = df.copy()
|
| 286 |
+
|
| 287 |
+
# Filter DataFrame by location names
|
| 288 |
+
if location_names:
|
| 289 |
+
# Create a case-insensitive filter
|
| 290 |
+
location_filter = (
|
| 291 |
+
filtered_df['city'].str.lower().isin([name.lower() for name in location_names]) |
|
| 292 |
+
filtered_df['city'].apply(lambda x: any(name.lower() in str(x).lower() for name in location_names)) |
|
| 293 |
+
filtered_df['combined_field'].apply(lambda x: any(name.lower() in str(x).lower() for name in location_names))
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
filtered_df = filtered_df[location_filter]
|
| 297 |
+
|
| 298 |
+
print(f"Location Names Used for Filtering: {location_names}")
|
| 299 |
+
print(f"Results after location filtering: {len(filtered_df)}")
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
enhanced_query_parts = []
|
| 304 |
+
if query:
|
| 305 |
+
enhanced_query_parts.append(query)
|
| 306 |
+
if category:
|
| 307 |
+
enhanced_query_parts.append(f"{category} category")
|
| 308 |
+
if city:
|
| 309 |
+
enhanced_query_parts.append(f" in {city}")
|
| 310 |
+
|
| 311 |
+
if min_lat is not None and max_lat is not None and min_lon is not None and max_lon is not None:
|
| 312 |
+
enhanced_query_parts.append(f"within latitudes {min_lat} to {max_lat} and longitudes {min_lon} to {max_lon}")
|
| 313 |
+
|
| 314 |
+
# Add location context
|
| 315 |
+
if location_info:
|
| 316 |
+
location_context = " ".join(filter(None, [
|
| 317 |
+
", ".join(location_info.get('city', [])),
|
| 318 |
+
location_info.get('state', ''),
|
| 319 |
+
# location_info.get('country', '')
|
| 320 |
+
]))
|
| 321 |
+
if location_context:
|
| 322 |
+
enhanced_query_parts.append(f"in {location_context}")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
enhanced_query = " ".join(enhanced_query_parts)
|
| 327 |
+
|
| 328 |
+
if enhanced_query:
|
| 329 |
+
enhanced_query = expand_category_once(enhanced_query, category)
|
| 330 |
+
print(f"Filtered by city '{city}': {len(filtered_df)} results")
|
| 331 |
+
|
| 332 |
+
print(f"Enhanced Query: {enhanced_query}")
|
| 333 |
+
|
| 334 |
+
detected_category = extract_category_from_query(enhanced_query)
|
| 335 |
+
if detected_category:
|
| 336 |
+
category_filter = (
|
| 337 |
+
filtered_df['category'].str.contains(detected_category, case=False, na=False) |
|
| 338 |
+
filtered_df['combined_field'].str.contains(detected_category, case=False, na=False)
|
| 339 |
+
)
|
| 340 |
+
filtered_df = filtered_df[category_filter]
|
| 341 |
+
|
| 342 |
+
print(f"Filtered by query words '{detected_category}': {len(filtered_df)} results")
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
try:
|
| 346 |
+
query_vector = model.encode([enhanced_query])[0]
|
| 347 |
+
|
| 348 |
+
# Compute embeddings for the filtered DataFrame
|
| 349 |
+
filtered_embeddings = precomputed_embeddings[filtered_df.index]
|
| 350 |
+
|
| 351 |
+
# Create FAISS index with filtered embeddings
|
| 352 |
+
filtered_index = faiss.IndexFlatL2(filtered_embeddings.shape[1])
|
| 353 |
+
filtered_index.add(filtered_embeddings.astype(np.float32))
|
| 354 |
+
|
| 355 |
+
# Perform semantic search on filtered results
|
| 356 |
+
k = min(20, len(filtered_df))
|
| 357 |
+
distances, local_indices = filtered_index.search(
|
| 358 |
+
np.array([query_vector]).astype(np.float32),
|
| 359 |
+
k
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
# Get the top results
|
| 363 |
+
results_df = filtered_df.iloc[local_indices[0]]
|
| 364 |
+
|
| 365 |
+
# Format results
|
| 366 |
+
formatted_results = []
|
| 367 |
+
for i, (_, row) in enumerate(results_df.iterrows(), 1):
|
| 368 |
+
formatted_results.append(
|
| 369 |
+
f"\n=== Result {i} ===\n"
|
| 370 |
+
f"Name: {row['name']}\n"
|
| 371 |
+
f"Category: {row['category']}\n"
|
| 372 |
+
f"City: {row['city']}\n"
|
| 373 |
+
f"Address: {row['address']}\n"
|
| 374 |
+
f"Description: {row['description']}\n"
|
| 375 |
+
f"Latitude: {row['latitude']}\n"
|
| 376 |
+
f"Longitude: {row['longitude']}\n"
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
search_results = "\n".join(formatted_results) if formatted_results else "No matching locations found."
|
| 380 |
+
|
| 381 |
+
# Optional: Use Mistral for further refinement
|
| 382 |
+
try:
|
| 383 |
+
answer = query_mistral(enhanced_query, search_results)
|
| 384 |
+
except Exception as e:
|
| 385 |
+
print(f"Error in Mistral query: {e}")
|
| 386 |
+
answer = "Unable to generate additional insights."
|
| 387 |
+
|
| 388 |
+
return search_results, answer
|
| 389 |
+
|
| 390 |
+
except Exception as e:
|
| 391 |
+
print(f"Error in semantic search: {e}")
|
| 392 |
+
return f"Error performing search: {str(e)}", ""
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
def query_mistral(prompt: str, context: str, max_retries: int = 3) -> str:
|
| 396 |
+
"""
|
| 397 |
+
Robust Mistral verification with exponential backoff
|
| 398 |
+
"""
|
| 399 |
+
import time
|
| 400 |
+
|
| 401 |
+
# Early return if no context
|
| 402 |
+
if not context or context.strip() == "No matching locations found.":
|
| 403 |
+
return context
|
| 404 |
+
|
| 405 |
+
verification_prompt = f"""Precise Location Curation Task:
|
| 406 |
+
REQUIREMENTS:
|
| 407 |
+
- Source Query: {prompt}
|
| 408 |
+
- Current Context: {context}
|
| 409 |
+
|
| 410 |
+
DETAILED INSTRUCTIONS:
|
| 411 |
+
1. Write the min, max latitude and min, max longitude in the beginning taking from the query
|
| 412 |
+
2. Curate a comprehensive list of 15 locations inside of these coordinates and strictly relevant to place.
|
| 413 |
+
3. Take STRICTLY ONLY relevant places to Source Query.
|
| 414 |
+
4. Add a short description about the place (2-3 sentences)
|
| 415 |
+
5. Add coordinates (lat and long).
|
| 416 |
+
6. Add address for the place
|
| 417 |
+
7. Remove any duplicate entries in the list
|
| 418 |
+
8. If places > 10, quick generation a new places relevant to Source Query and inside of the coordinates
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
CRITICAL: Do NOT use placeholder. Quick and fast response required
|
| 422 |
+
"""
|
| 423 |
+
|
| 424 |
+
for attempt in range(max_retries):
|
| 425 |
+
try:
|
| 426 |
+
# Robust API configuration
|
| 427 |
+
response = requests.post(
|
| 428 |
+
MISTRAL_API_URL,
|
| 429 |
+
headers={
|
| 430 |
+
"Authorization": f"Bearer {MISTRAL_API_KEY}",
|
| 431 |
+
"Content-Type": "application/json"
|
| 432 |
+
},
|
| 433 |
+
json={
|
| 434 |
+
"model": "mistral-large-latest",
|
| 435 |
+
"messages": [
|
| 436 |
+
{"role": "system", "content": "You are a precise location curator specializing in comprehensive travel information."},
|
| 437 |
+
{"role": "user", "content": verification_prompt}
|
| 438 |
+
],
|
| 439 |
+
"temperature": 0.1,
|
| 440 |
+
"max_tokens": 5000
|
| 441 |
+
},
|
| 442 |
+
timeout=100 # Increased timeout
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
# Enhanced error handling
|
| 446 |
+
response.raise_for_status()
|
| 447 |
+
|
| 448 |
+
# Extract verified response
|
| 449 |
+
verified_response = response.json()['choices'][0]['message']['content']
|
| 450 |
+
|
| 451 |
+
# Validate response length and complexity
|
| 452 |
+
if len(verified_response.strip()) < 100:
|
| 453 |
+
if attempt == max_retries - 1:
|
| 454 |
+
return context
|
| 455 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
| 456 |
+
continue
|
| 457 |
+
|
| 458 |
+
return verified_response
|
| 459 |
+
|
| 460 |
+
except requests.Timeout:
|
| 461 |
+
logging.warning(f"Mistral API timeout (Attempt {attempt + 1}/{max_retries})")
|
| 462 |
+
if attempt < max_retries - 1:
|
| 463 |
+
time.sleep(2 ** attempt) # Exponential backoff
|
| 464 |
+
else:
|
| 465 |
+
logging.error("Mistral API consistently timing out")
|
| 466 |
+
return context
|
| 467 |
+
|
| 468 |
+
except requests.RequestException as e:
|
| 469 |
+
logging.error(f"Mistral API request error: {e}")
|
| 470 |
+
if attempt < max_retries - 1:
|
| 471 |
+
time.sleep(2 ** attempt)
|
| 472 |
+
else:
|
| 473 |
+
return context
|
| 474 |
+
|
| 475 |
+
except Exception as e:
|
| 476 |
+
logging.error(f"Unexpected error in Mistral verification: {e}")
|
| 477 |
+
if attempt < max_retries - 1:
|
| 478 |
+
time.sleep(2 ** attempt)
|
| 479 |
+
else:
|
| 480 |
+
return context
|
| 481 |
+
|
| 482 |
+
return context
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
def create_interface(
|
| 487 |
+
df: pd.DataFrame,
|
| 488 |
+
model: SentenceTransformer,
|
| 489 |
+
precomputed_embeddings: np.ndarray,
|
| 490 |
+
index: faiss.IndexFlatL2
|
| 491 |
+
):
|
| 492 |
+
"""Create Gradio interface with 4 bounding box inputs"""
|
| 493 |
+
return gr.Interface(
|
| 494 |
+
fn=lambda q, min_lat, max_lat, min_lon, max_lon, city, cat: rag_query(
|
| 495 |
+
query=q,
|
| 496 |
+
df=df,
|
| 497 |
+
model=model,
|
| 498 |
+
precomputed_embeddings=precomputed_embeddings,
|
| 499 |
+
index=index,
|
| 500 |
+
min_lat=min_lat,
|
| 501 |
+
max_lat=max_lat,
|
| 502 |
+
min_lon=min_lon,
|
| 503 |
+
max_lon=max_lon,
|
| 504 |
+
city=city,
|
| 505 |
+
category=cat
|
| 506 |
+
)[1],
|
| 507 |
+
inputs=[
|
| 508 |
+
gr.Textbox(lines=2, label="Question"),
|
| 509 |
+
gr.Textbox(label="Min Latitude"),
|
| 510 |
+
gr.Textbox(label="Max Latitude"),
|
| 511 |
+
gr.Textbox(label="Min Longitude"),
|
| 512 |
+
gr.Textbox(label="Max Longitude"),
|
| 513 |
+
gr.Textbox(label="City"),
|
| 514 |
+
gr.Textbox(label="Category")
|
| 515 |
+
],
|
| 516 |
+
outputs=[
|
| 517 |
+
gr.Textbox(label="Locations Found"),
|
| 518 |
+
],
|
| 519 |
+
title="Tourist Information System with Bounding Box Search",
|
| 520 |
+
examples=[
|
| 521 |
+
["Museums in area", "40.71", "40.86", "-74.0", "-74.1", "", "museum"],
|
| 522 |
+
["Restaurants", "48.8575", "48.9", "2.3514", "2.4", "Paris", "restaurant"],
|
| 523 |
+
["Coffee shops", "51.5", "51.6", "-0.2", "-0.1", "London", "cafe"],
|
| 524 |
+
["Spa places", "", "", "", "", "Budapest", ""],
|
| 525 |
+
["Lambic brewery", "50.84211068618749", "50.849274898691244","4.339536387173865", "4.361188801802462", "", ""],
|
| 526 |
+
["Art nouveau architecture buildings", "44.42563381188614", "44.43347927669681","26.008709832230608", "26.181744493414488", "", ""],
|
| 527 |
+
["Harry Potter filming locations", "51.52428877891333", "51.54738884423489", "-0.1955164690977472", "-0.05082973945560466", "", ""]
|
| 528 |
+
|
| 529 |
+
]
|
| 530 |
+
)
|
| 531 |
+
if __name__ == "__main__":
|
| 532 |
+
try:
|
| 533 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 534 |
+
precomputed_embeddings = embeddings
|
| 535 |
+
index = faiss.IndexFlatL2(precomputed_embeddings.shape[1])
|
| 536 |
+
index.add(precomputed_embeddings.astype(np.float32))
|
| 537 |
+
|
| 538 |
+
iface = create_interface(df, model, precomputed_embeddings, index)
|
| 539 |
+
iface.launch(share=True, debug=True)
|
| 540 |
+
except Exception as e:
|
| 541 |
+
logging.error(f"Startup error: {e}")
|
| 542 |
+
sys.exit(1)
|