File size: 1,149 Bytes
d28f9e1
 
6c6a1a9
f6e15ed
 
 
 
47246fc
 
 
f9ba7f4
34f4d08
 
0b30140
 
 
f9ba7f4
47246fc
 
 
d28f9e1
47246fc
d28f9e1
 
 
47246fc
d28f9e1
 
 
 
 
47246fc
d28f9e1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from fastapi import FastAPI,Query
from pydantic import BaseModel
from transformers import pipeline
app = FastAPI()

@app.get("/")
def greet_json():
    return {"status": "Its working built by Fayaz"}

# Initialize the text generation pipeline
pipe = pipeline("text2text-generation", model="google/flan-t5-small")
# checking for ofingpt
# ofintech/FinGPT_0.1.3
# pipe = pipeline("text2text-generation", model="MudassirFayaz/llama-2-7b_career_0.6.0", trust_remote_code=True)
# Initialize the text generation pipeline
# model = AutoModelForSeq2SeqLM.from_pretrained("ofintech/FinGPT_0.1.3")
# pipe = pipeline("text2text-generation", model="MudassirFayaz/llama-2-7b_career_0.6.0", tokenizer=tokenizer)

@app.get("/")
def home():
    return {"message": "Hello World"}

# Define a request model
class TextRequest(BaseModel):
    text: str

# Define a function to handle the POST request at `/generate`
@app.post("/generate")
def generate(request: TextRequest):
    # Use the pipeline to generate text from given input text
    output = pipe(request.text)

    # Return the generated text in JSON response
    return {"output": output[0]['generated_text']}