Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,48 @@
|
|
1 |
-
|
2 |
-
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
|
|
|
|
|
|
42 |
|
43 |
-
""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
1 |
+
# Install necessary libraries first
|
2 |
+
!pip install gradio transformers sentencepiece
|
3 |
|
4 |
+
# Now, import everything
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import MarianMTModel, MarianTokenizer
|
|
|
7 |
|
8 |
+
# Load models
|
9 |
+
en_to_ur_model_name = "Helsinki-NLP/opus-mt-en-ur"
|
10 |
+
ur_to_en_model_name = "Helsinki-NLP/opus-mt-ur-en"
|
11 |
|
12 |
+
en_to_ur_tokenizer = MarianTokenizer.from_pretrained(en_to_ur_model_name)
|
13 |
+
en_to_ur_model = MarianMTModel.from_pretrained(en_to_ur_model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
ur_to_en_tokenizer = MarianTokenizer.from_pretrained(ur_to_en_model_name)
|
16 |
+
ur_to_en_model = MarianMTModel.from_pretrained(ur_to_en_model_name)
|
|
|
|
|
|
|
17 |
|
18 |
+
# Define translation functions
|
19 |
+
def translate_en_to_ur(text):
|
20 |
+
inputs = en_to_ur_tokenizer(text, return_tensors="pt", padding=True)
|
21 |
+
translated = en_to_ur_model.generate(**inputs)
|
22 |
+
result = en_to_ur_tokenizer.decode(translated[0], skip_special_tokens=True)
|
23 |
+
return result
|
24 |
|
25 |
+
def translate_ur_to_en(text):
|
26 |
+
inputs = ur_to_en_tokenizer(text, return_tensors="pt", padding=True)
|
27 |
+
translated = ur_to_en_model.generate(**inputs)
|
28 |
+
result = ur_to_en_tokenizer.decode(translated[0], skip_special_tokens=True)
|
29 |
+
return result
|
30 |
|
31 |
+
# Create Gradio Interface
|
32 |
+
with gr.Blocks() as app:
|
33 |
+
gr.Markdown("## 📝 English ↔ Urdu Translator (Free, Open Source)")
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
with gr.Row():
|
36 |
+
input_text = gr.Textbox(lines=4, placeholder="Enter your text here...")
|
37 |
|
38 |
+
with gr.Row():
|
39 |
+
en_to_ur_button = gr.Button("Translate English → Urdu")
|
40 |
+
ur_to_en_button = gr.Button("Translate Urdu → English")
|
41 |
|
42 |
+
output_text = gr.Textbox(lines=4, label="Translated Text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
en_to_ur_button.click(fn=translate_en_to_ur, inputs=input_text, outputs=output_text)
|
45 |
+
ur_to_en_button.click(fn=translate_ur_to_en, inputs=input_text, outputs=output_text)
|
46 |
|
47 |
+
# Launch app
|
48 |
+
app.launch()
|