import gradio as gr from transformers import AutoProcessor, BlipForConditionalGeneration from PIL import Image import numpy as np # Load BLIP model processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def caption_image(input_image: np.ndarray): # Convert numpy array to PIL Image raw_image = Image.fromarray(input_image).convert('RGB') # Generate caption inputs = processor(images=raw_image, text="a photo of", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) caption = processor.decode(outputs[0], skip_special_tokens=True) return caption # Gradio interface iface = gr.Interface( fn=caption_image, inputs=gr.Image(), outputs="text", title="Image Captioning", ) iface.launch()