Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +60 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import VisionEncoderDecoderModel, DonutProcessor
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load the model and processor
|
7 |
+
model_checkpoint_path = "Muhammad2019abdelfattah/Unichart_Fine-tuning"
|
8 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint_path)
|
9 |
+
processor = DonutProcessor.from_pretrained(model_checkpoint_path) # Assuming DonutProcessor is used
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model.to(device)
|
12 |
+
|
13 |
+
def generate_summary(image: Image.Image) -> str:
|
14 |
+
try:
|
15 |
+
# Define the input prompt for summarization
|
16 |
+
input_prompt = "<summarize_chart> <s_answer>"
|
17 |
+
|
18 |
+
# Load and process the image
|
19 |
+
img = image.convert("RGB")
|
20 |
+
pixel_values = processor(img, return_tensors="pt").pixel_values.to(device)
|
21 |
+
|
22 |
+
# Encode the input prompt
|
23 |
+
decoder_input_ids = processor.tokenizer(input_prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(device)
|
24 |
+
|
25 |
+
# Generate the summary
|
26 |
+
outputs = model.generate(
|
27 |
+
pixel_values=pixel_values,
|
28 |
+
decoder_input_ids=decoder_input_ids,
|
29 |
+
max_length=512, # Adjust max_length as needed
|
30 |
+
early_stopping=True,
|
31 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
32 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
33 |
+
use_cache=True,
|
34 |
+
num_beams=4,
|
35 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
36 |
+
return_dict_in_generate=True,
|
37 |
+
)
|
38 |
+
|
39 |
+
# Decode the output
|
40 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
41 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
42 |
+
summary = sequence.split("<s_answer>")[1].strip()
|
43 |
+
|
44 |
+
return summary
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
print(f"An error occurred: {e}")
|
48 |
+
return "An error occurred during summarization."
|
49 |
+
|
50 |
+
# Create Gradio interface
|
51 |
+
iface = gr.Interface(
|
52 |
+
fn=generate_summary, # Function to call
|
53 |
+
inputs=gr.Image(type="pil"), # Input type (image)
|
54 |
+
outputs="text", # Output type (text)
|
55 |
+
title="Chart Summarization",
|
56 |
+
description="Upload a chart image to get a summary based on the image content."
|
57 |
+
)
|
58 |
+
|
59 |
+
# Launch the Gradio interface on an automatically selected port
|
60 |
+
iface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
Pillow
|
4 |
+
gradio
|