Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title: AI-
|
3 |
-
emoji: π
|
4 |
-
colorFrom: purple
|
5 |
-
colorTo: gray
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 5.33.0
|
8 |
app_file: app.py
|
9 |
-
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: AI-Powered_Speech-to-Text_Transcriber
|
|
|
|
|
|
|
|
|
|
|
3 |
app_file: app.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 5.31.0
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# app.py
|
3 |
+
|
4 |
+
!pip install gradio
|
5 |
+
!pip install transformers
|
6 |
+
!pip install soundfile
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import soundfile as sf
|
10 |
+
import os
|
11 |
+
from transformers import pipeline
|
12 |
+
|
13 |
+
asr = pipeline(task="automatic-speech-recognition",
|
14 |
+
model="distil-whisper/distil-small.en")
|
15 |
+
|
16 |
+
def transcribe_speech(audio_filepath):
|
17 |
+
if audio_filepath is None:
|
18 |
+
gr.Warning('No audio found. Please try again!')
|
19 |
+
# This line defines a Python function named 'transcribe_speech'
|
20 |
+
# It takes one argument: 'audio_filepath', which is expected to be a string
|
21 |
+
# representing the path to an audio file on your system (e.g., 'my_audio.wav').
|
22 |
+
|
23 |
+
# 1. Load audio from file
|
24 |
+
# This line uses 'sf.read()' (likely from the 'soundfile' library, or similar)
|
25 |
+
# to read the contents of the audio file specified by 'audio_filepath'.
|
26 |
+
# It returns two main pieces of information:
|
27 |
+
# - 'audio': A NumPy array containing the numerical samples of the audio waveform.
|
28 |
+
# This is the raw digital representation of the sound.
|
29 |
+
# - 'sr': The sampling rate (in Hertz) of the audio. This tells you how many
|
30 |
+
# samples per second are in the 'audio' array (e.g., 16000 Hz, 44100 Hz).
|
31 |
+
audio, sr = sf.read(audio_filepath)
|
32 |
+
|
33 |
+
# 2. Pass audio data to the ASR model/pipeline for transcription
|
34 |
+
# This is the core step where the speech recognition happens.
|
35 |
+
# - 'asr': This variable (which must be defined and initialized elsewhere in your code)
|
36 |
+
# represents your pre-trained ASR model or, more likely, a Hugging Face
|
37 |
+
# ASR pipeline (like the one you'd get from `pipeline("automatic-speech-recognition", model="...")`).
|
38 |
+
# - `{"array": audio, "sampling_rate": sr}`: This is the crucial input format
|
39 |
+
# expected by many Hugging Face ASR models and pipelines. It's a dictionary
|
40 |
+
# where:
|
41 |
+
# - 'array': Contains the raw numerical audio waveform.
|
42 |
+
# - 'sampling_rate': Provides the corresponding sampling rate.
|
43 |
+
# The ASR model needs both to correctly interpret the audio.
|
44 |
+
# - 'result': The output from the 'asr' model/pipeline. For ASR tasks, this is
|
45 |
+
# typically a dictionary containing the transcribed text and potentially
|
46 |
+
# other metadata (like word timestamps or confidence scores).
|
47 |
+
result = asr(
|
48 |
+
{"array": audio, "sampling_rate": sr}
|
49 |
+
)
|
50 |
+
|
51 |
+
# 3. Extract and return the transcribed text
|
52 |
+
# The ASR pipeline or model usually returns its primary output (the transcription)
|
53 |
+
# under a specific key, commonly 'text'.
|
54 |
+
# This line extracts that text string from the 'result' dictionary.
|
55 |
+
return result['text']
|
56 |
+
|
57 |
+
|
58 |
+
mic_transcribe = gr.Interface(
|
59 |
+
fn=transcribe_speech,
|
60 |
+
inputs=gr.Audio(
|
61 |
+
sources="microphone",
|
62 |
+
type="filepath",
|
63 |
+
label="π€ Speak into your microphone" # Appealing label
|
64 |
+
),
|
65 |
+
outputs=gr.Textbox(
|
66 |
+
label="π Transcription Result", # Appealing label
|
67 |
+
lines=4, # Slightly more lines for longer transcriptions
|
68 |
+
placeholder="Your transcribed text will appear here..."
|
69 |
+
),
|
70 |
+
allow_flagging="never", # Disable flagging
|
71 |
+
description="Record your voice directly using your device's microphone. Get an instant transcription."
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
file_transcribe = gr.Interface(
|
76 |
+
fn=transcribe_speech,
|
77 |
+
inputs=gr.Audio(
|
78 |
+
sources="upload", # Allow input from file upload
|
79 |
+
type="filepath", # Function receives audio as a temporary file path
|
80 |
+
label="π Upload an Audio File" # Appealing label
|
81 |
+
),
|
82 |
+
outputs=gr.Textbox(
|
83 |
+
label="π Transcription Result", # Appealing label
|
84 |
+
lines=4, # Slightly more lines
|
85 |
+
placeholder="Upload an audio file (e.g., .wav, .mp3) to get its transcription."
|
86 |
+
),
|
87 |
+
allow_flagging="never", # Disable flagging
|
88 |
+
description="Upload an audio file for transcription."
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
custom_css = """
|
93 |
+
/* Import Google Font - Arial (or a very similar sans-serif if Arial isn't universally available on all systems) */
|
94 |
+
/* Note: Arial is typically a system font, so direct import isn't strictly necessary for it to work,
|
95 |
+
but it's good practice for other fonts. */
|
96 |
+
@import url('https://fonts.googleapis.com/css2?family=Arial:wght@400;700&display=swap');
|
97 |
+
|
98 |
+
/* Apply Arial to ALL text elements by default within the Gradio container */
|
99 |
+
.gradio-container, body, button, input, select, textarea, div, p, span, h1, h2, h3, h4, h5, h6 {
|
100 |
+
font-family: 'Arial', sans-serif !important;
|
101 |
+
}
|
102 |
+
|
103 |
+
/* Overall container styling */
|
104 |
+
.gradio-container {
|
105 |
+
max-width: 900px; /* Limit overall width for better readability */
|
106 |
+
margin: 30px auto; /* Center the app on the page */
|
107 |
+
padding: 30px;
|
108 |
+
border-radius: 15px; /* Rounded corners for a softer look */
|
109 |
+
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.1); /* Subtle shadow for depth */
|
110 |
+
background-color: #ffffff; /* White background for the main content area */
|
111 |
+
}
|
112 |
+
|
113 |
+
/* Titles and Headers */
|
114 |
+
h1 {
|
115 |
+
color: #34495e; /* Darker blue-grey for main title */
|
116 |
+
text-align: center;
|
117 |
+
font-size: 2.5em; /* Larger main title */
|
118 |
+
margin-bottom: 10px;
|
119 |
+
font-weight: 700; /* Bold */
|
120 |
+
}
|
121 |
+
|
122 |
+
h3 {
|
123 |
+
color: #5d6d7e; /* Slightly lighter blue-grey for subtitle */
|
124 |
+
text-align: center;
|
125 |
+
font-size: 1.2em;
|
126 |
+
margin-top: 0;
|
127 |
+
margin-bottom: 25px;
|
128 |
+
}
|
129 |
+
|
130 |
+
p {
|
131 |
+
text-align: center;
|
132 |
+
color: #7f8c8d; /* Muted grey for descriptions */
|
133 |
+
font-size: 0.95em;
|
134 |
+
margin-bottom: 20px;
|
135 |
+
}
|
136 |
+
|
137 |
+
/* Tabbed Interface Styling */
|
138 |
+
.tabs {
|
139 |
+
border-radius: 10px;
|
140 |
+
overflow: hidden; /* Ensures rounded corners on tabs */
|
141 |
+
margin-bottom: 20px;
|
142 |
+
}
|
143 |
+
|
144 |
+
.tab-nav button {
|
145 |
+
background-color: #ecf0f1; /* Light grey for inactive tabs */
|
146 |
+
color: #34495e; /* Dark text for inactive tabs */
|
147 |
+
font-weight: bold;
|
148 |
+
padding: 12px 20px;
|
149 |
+
border-radius: 8px 8px 0 0;
|
150 |
+
margin-right: 5px; /* Small space between tabs */
|
151 |
+
transition: all 0.3s ease;
|
152 |
+
}
|
153 |
+
|
154 |
+
.tab-nav button.selected {
|
155 |
+
background-color: #4a90e2; /* Vibrant blue for active tab */
|
156 |
+
color: white; /* White text for active tab */
|
157 |
+
box-shadow: 0 4px 10px rgba(74, 144, 226, 0.3); /* Subtle shadow for active tab */
|
158 |
+
}
|
159 |
+
|
160 |
+
/* Input and Output Component Styling (General) */
|
161 |
+
.gr-box {
|
162 |
+
border-radius: 10px; /* Rounded corners for input/output boxes */
|
163 |
+
border: 1px solid #dfe6e9; /* Light border */
|
164 |
+
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05); /* Very subtle shadow */
|
165 |
+
padding: 20px;
|
166 |
+
background-color: #fcfcfc; /* Slightly off-white background */
|
167 |
+
}
|
168 |
+
|
169 |
+
/* Labels within components (e.g., "Upload Audio File", "Transcription Result") */
|
170 |
+
.label {
|
171 |
+
font-weight: bold;
|
172 |
+
color: #2c3e50; /* Dark text for labels */
|
173 |
+
font-size: 1.1em;
|
174 |
+
margin-bottom: 8px;
|
175 |
+
}
|
176 |
+
|
177 |
+
/* Buttons (Clear, Submit) */
|
178 |
+
.gr-button {
|
179 |
+
background-color: #4a90e2 !important; /* Primary blue for actions */
|
180 |
+
color: white !important;
|
181 |
+
border: none !important;
|
182 |
+
border-radius: 8px !important; /* Rounded buttons */
|
183 |
+
padding: 12px 25px !important;
|
184 |
+
font-weight: bold !important;
|
185 |
+
transition: background-color 0.3s ease, box-shadow 0.3s ease !important;
|
186 |
+
margin: 5px; /* Spacing between buttons */
|
187 |
+
}
|
188 |
+
|
189 |
+
.gr-button:hover {
|
190 |
+
background-color: #3a7bd2 !important; /* Darker blue on hover */
|
191 |
+
box-shadow: 0 4px 15px rgba(74, 144, 226, 0.4) !important;
|
192 |
+
}
|
193 |
+
|
194 |
+
/* Clear button specific */
|
195 |
+
.gr-button.secondary {
|
196 |
+
background-color: #e0e6eb !important; /* Lighter grey for clear */
|
197 |
+
color: #34495e !important;
|
198 |
+
}
|
199 |
+
.gr-button.secondary:hover {
|
200 |
+
background-color: #d1d8df !important;
|
201 |
+
box-shadow: none !important;
|
202 |
+
}
|
203 |
+
|
204 |
+
/* Textbox specific */
|
205 |
+
textarea {
|
206 |
+
border-radius: 8px !important;
|
207 |
+
border: 1px solid #bdc3c7 !important;
|
208 |
+
padding: 10px !important;
|
209 |
+
resize: vertical; /* Allow vertical resizing */
|
210 |
+
}
|
211 |
+
|
212 |
+
/* Audio component player */
|
213 |
+
.gr-audio-player {
|
214 |
+
border-radius: 8px;
|
215 |
+
background-color: #f0f0f0;
|
216 |
+
padding: 10px;
|
217 |
+
}
|
218 |
+
|
219 |
+
/* Footer styling */
|
220 |
+
hr {
|
221 |
+
border: none;
|
222 |
+
border-top: 1px solid #e0e0e0;
|
223 |
+
margin-top: 30px;
|
224 |
+
margin-bottom: 15px;
|
225 |
+
}
|
226 |
+
|
227 |
+
.footer-text {
|
228 |
+
font-size: 0.85em;
|
229 |
+
color: #a0a0a0;
|
230 |
+
text-align: center;
|
231 |
+
}
|
232 |
+
"""
|
233 |
+
|
234 |
+
# --- 6. Main Gradio App using Blocks for layout and styling ---
|
235 |
+
# Initialize a Gradio Blocks interface with a theme and custom CSS.
|
236 |
+
demo = gr.Blocks(
|
237 |
+
theme=gr.themes.Soft(), # A good base theme for soft colors
|
238 |
+
css=custom_css # Apply our custom CSS
|
239 |
+
)
|
240 |
+
|
241 |
+
# Define the layout within the 'demo' Blocks context
|
242 |
+
with demo:
|
243 |
+
# Main Title and Description using Markdown for rich formatting and appealing colors
|
244 |
+
# Removed inline style for font-family as it's handled by global CSS now.
|
245 |
+
gr.Markdown(
|
246 |
+
"""
|
247 |
+
<center>
|
248 |
+
<h1 style="color: #4A90E2;">
|
249 |
+
ποΈ AI-Powered Speech-to-Text Transcriber π
|
250 |
+
</h1>
|
251 |
+
<h3 style="color: #6C7A89;">
|
252 |
+
Developed by Muhammad Farhan Aslam.
|
253 |
+
</h3>
|
254 |
+
<h3 style="color: #6C7A89;">
|
255 |
+
Convert spoken words into accurate text with ease and precision.
|
256 |
+
</h3>
|
257 |
+
<p style="color: #8C9CA7; font-size: 1.05em;">
|
258 |
+
Effortlessly transcribe audio from your microphone or by uploading a file.
|
259 |
+
This application leverages advanced AI to provide clear and reliable transcriptions.
|
260 |
+
</p>
|
261 |
+
</center>
|
262 |
+
"""
|
263 |
+
)
|
264 |
+
|
265 |
+
# Create a tabbed interface for microphone and file upload transcription
|
266 |
+
gr.TabbedInterface(
|
267 |
+
[file_transcribe, mic_transcribe],
|
268 |
+
["π Transcribe Audio File", "π€ Transcribe from Microphone"],
|
269 |
+
)
|
270 |
+
|
271 |
+
# Add a subtle footer for information or credits
|
272 |
+
gr.Markdown(
|
273 |
+
"""
|
274 |
+
<hr>
|
275 |
+
<p class="footer-text">
|
276 |
+
Built with β€οΈ and Gradio on Hugging Face Transformers.
|
277 |
+
</p>
|
278 |
+
"""
|
279 |
+
)
|
280 |
+
# start_port = int(os.environ.get('PORT1', 7861))
|
281 |
+
# demo.launch(share=True, server_port=start_port)
|