Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -480,6 +480,108 @@ from detectron2.data import MetadataCatalog
|
|
480 |
|
481 |
|
482 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
|
484 |
|
485 |
|
@@ -487,6 +589,7 @@ import streamlit as st
|
|
487 |
import numpy as np
|
488 |
import cv2
|
489 |
import torch
|
|
|
490 |
from PIL import Image
|
491 |
from tensorflow.keras.models import load_model
|
492 |
from tensorflow.keras.preprocessing import image
|
@@ -513,8 +616,10 @@ model_name, model_quality = load_models()
|
|
513 |
@st.cache_resource
|
514 |
def load_detectron_model(fruit_name):
|
515 |
cfg = get_cfg()
|
516 |
-
|
517 |
-
cfg.
|
|
|
|
|
518 |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
|
519 |
cfg.MODEL.DEVICE = 'cpu'
|
520 |
predictor = DefaultPredictor(cfg)
|
@@ -563,15 +668,16 @@ def main():
|
|
563 |
|
564 |
if predicted_name.lower() in ["kaki", "tomato", "strawberry", "pepper", "pear", "peach", "papaya", "watermelon", "grape", "banana", "cucumber"] and predicted_quality in ["Mild", "Rotten"]:
|
565 |
st.write("Detecting damage...")
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
|
|
|
|
|
|
571 |
else:
|
572 |
st.write("No damage detection performed for this fruit or quality level.")
|
573 |
|
574 |
if __name__ == "__main__":
|
575 |
-
main()
|
576 |
-
|
577 |
-
|
|
|
480 |
|
481 |
|
482 |
|
483 |
+
|
484 |
+
|
485 |
+
|
486 |
+
# import streamlit as st
|
487 |
+
# import numpy as np
|
488 |
+
# import cv2
|
489 |
+
# import torch
|
490 |
+
# from PIL import Image
|
491 |
+
# from tensorflow.keras.models import load_model
|
492 |
+
# from tensorflow.keras.preprocessing import image
|
493 |
+
# from detectron2.engine import DefaultPredictor
|
494 |
+
# from detectron2.config import get_cfg
|
495 |
+
# from detectron2.utils.visualizer import Visualizer
|
496 |
+
# from detectron2.data import MetadataCatalog
|
497 |
+
|
498 |
+
# # Suppress warnings
|
499 |
+
# import warnings
|
500 |
+
# import tensorflow as tf
|
501 |
+
# warnings.filterwarnings("ignore")
|
502 |
+
# tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
503 |
+
|
504 |
+
# @st.cache_resource
|
505 |
+
# def load_models():
|
506 |
+
# model_name = load_model('name_model_inception.h5')
|
507 |
+
# model_quality = load_model('type_model_inception.h5')
|
508 |
+
# return model_name, model_quality
|
509 |
+
|
510 |
+
# model_name, model_quality = load_models()
|
511 |
+
|
512 |
+
# # Detectron2 setup
|
513 |
+
# @st.cache_resource
|
514 |
+
# def load_detectron_model(fruit_name):
|
515 |
+
# cfg = get_cfg()
|
516 |
+
# cfg.merge_from_file(f"{fruit_name.lower()}.yaml")
|
517 |
+
# cfg.MODEL.WEIGHTS = f"{fruit_name.lower()}_model.pth"
|
518 |
+
# cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
|
519 |
+
# cfg.MODEL.DEVICE = 'cpu'
|
520 |
+
# predictor = DefaultPredictor(cfg)
|
521 |
+
# return predictor, cfg
|
522 |
+
|
523 |
+
# # Labels
|
524 |
+
# label_map_name = {
|
525 |
+
# 0: "Banana", 1: "Cucumber", 2: "Grape", 3: "Kaki", 4: "Papaya",
|
526 |
+
# 5: "Peach", 6: "Pear", 7: "Pepper", 8: "Strawberry", 9: "Watermelon",
|
527 |
+
# 10: "Tomato"
|
528 |
+
# }
|
529 |
+
# label_map_quality = {0: "Good", 1: "Mild", 2: "Rotten"}
|
530 |
+
|
531 |
+
# def predict_fruit(img):
|
532 |
+
# # Preprocess image
|
533 |
+
# img = Image.fromarray(img.astype('uint8'), 'RGB')
|
534 |
+
# img = img.resize((224, 224))
|
535 |
+
# x = image.img_to_array(img)
|
536 |
+
# x = np.expand_dims(x, axis=0)
|
537 |
+
# x = x / 255.0
|
538 |
+
|
539 |
+
# # Predict
|
540 |
+
# pred_name = model_name.predict(x)
|
541 |
+
# pred_quality = model_quality.predict(x)
|
542 |
+
|
543 |
+
# predicted_name = label_map_name[np.argmax(pred_name, axis=1)[0]]
|
544 |
+
# predicted_quality = label_map_quality[np.argmax(pred_quality, axis=1)[0]]
|
545 |
+
|
546 |
+
# return predicted_name, predicted_quality, img
|
547 |
+
|
548 |
+
# def main():
|
549 |
+
# st.title("Fruit Quality and Damage Detection")
|
550 |
+
# st.write("Upload an image of a fruit to detect its type, quality, and potential damage.")
|
551 |
+
|
552 |
+
# uploaded_file = st.file_uploader("Choose a fruit image...", type=["jpg", "jpeg", "png"])
|
553 |
+
|
554 |
+
# if uploaded_file is not None:
|
555 |
+
# image = Image.open(uploaded_file)
|
556 |
+
# st.image(image, caption="Uploaded Image", use_column_width=True)
|
557 |
+
|
558 |
+
# if st.button("Analyze"):
|
559 |
+
# predicted_name, predicted_quality, img = predict_fruit(np.array(image))
|
560 |
+
|
561 |
+
# st.write(f"Fruit Type: {predicted_name}")
|
562 |
+
# st.write(f"Fruit Quality: {predicted_quality}")
|
563 |
+
|
564 |
+
# if predicted_name.lower() in ["kaki", "tomato", "strawberry", "pepper", "pear", "peach", "papaya", "watermelon", "grape", "banana", "cucumber"] and predicted_quality in ["Mild", "Rotten"]:
|
565 |
+
# st.write("Detecting damage...")
|
566 |
+
# predictor, cfg = load_detectron_model(predicted_name)
|
567 |
+
# outputs = predictor(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
|
568 |
+
# v = Visualizer(np.array(img), MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=0.8)
|
569 |
+
# out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
570 |
+
# st.image(out.get_image(), caption="Damage Detection Result", use_column_width=True)
|
571 |
+
# else:
|
572 |
+
# st.write("No damage detection performed for this fruit or quality level.")
|
573 |
+
|
574 |
+
# if __name__ == "__main__":
|
575 |
+
# main()
|
576 |
+
|
577 |
+
|
578 |
+
|
579 |
+
|
580 |
+
|
581 |
+
|
582 |
+
|
583 |
+
|
584 |
+
|
585 |
|
586 |
|
587 |
|
|
|
589 |
import numpy as np
|
590 |
import cv2
|
591 |
import torch
|
592 |
+
import os
|
593 |
from PIL import Image
|
594 |
from tensorflow.keras.models import load_model
|
595 |
from tensorflow.keras.preprocessing import image
|
|
|
616 |
@st.cache_resource
|
617 |
def load_detectron_model(fruit_name):
|
618 |
cfg = get_cfg()
|
619 |
+
config_path = os.path.join('utils', f"{fruit_name.lower()}_config.yaml")
|
620 |
+
cfg.merge_from_file(config_path)
|
621 |
+
model_path = os.path.join('models', f"{fruit_name.lower()}_model.pth")
|
622 |
+
cfg.MODEL.WEIGHTS = model_path
|
623 |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
|
624 |
cfg.MODEL.DEVICE = 'cpu'
|
625 |
predictor = DefaultPredictor(cfg)
|
|
|
668 |
|
669 |
if predicted_name.lower() in ["kaki", "tomato", "strawberry", "pepper", "pear", "peach", "papaya", "watermelon", "grape", "banana", "cucumber"] and predicted_quality in ["Mild", "Rotten"]:
|
670 |
st.write("Detecting damage...")
|
671 |
+
try:
|
672 |
+
predictor, cfg = load_detectron_model(predicted_name)
|
673 |
+
outputs = predictor(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
|
674 |
+
v = Visualizer(np.array(img), MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=0.8)
|
675 |
+
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
676 |
+
st.image(out.get_image(), caption="Damage Detection Result", use_column_width=True)
|
677 |
+
except Exception as e:
|
678 |
+
st.error(f"Error in damage detection: {str(e)}")
|
679 |
else:
|
680 |
st.write("No damage detection performed for this fruit or quality level.")
|
681 |
|
682 |
if __name__ == "__main__":
|
683 |
+
main()
|
|
|
|