Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,135 @@
|
|
1 |
|
2 |
-
import streamlit as st
|
3 |
-
import numpy as np
|
4 |
-
import cv2
|
5 |
-
import warnings
|
6 |
-
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
# Suppress warnings
|
9 |
-
warnings.filterwarnings("ignore", category=FutureWarning)
|
10 |
-
warnings.filterwarnings("ignore", category=UserWarning)
|
11 |
|
12 |
-
# Try importing TensorFlow
|
13 |
-
try:
|
14 |
-
from tensorflow.keras.models import load_model
|
15 |
-
from tensorflow.keras.preprocessing import image
|
16 |
-
except ImportError:
|
17 |
-
st.error("Failed to import TensorFlow. Please make sure it's installed correctly.")
|
18 |
|
19 |
-
# Try importing PyTorch and Detectron2
|
20 |
-
try:
|
21 |
-
import torch
|
22 |
-
import detectron2
|
23 |
-
except ImportError:
|
24 |
-
with st.spinner("Installing PyTorch and Detectron2..."):
|
25 |
-
os.system("pip install torch torchvision")
|
26 |
-
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
|
27 |
|
28 |
-
import torch
|
29 |
-
import detectron2
|
30 |
|
31 |
|
32 |
import streamlit as st
|
@@ -34,13 +137,23 @@ import numpy as np
|
|
34 |
import cv2
|
35 |
import torch
|
36 |
import os
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
from tensorflow.keras.models import load_model
|
39 |
from tensorflow.keras.preprocessing import image
|
40 |
from detectron2.engine import DefaultPredictor
|
41 |
from detectron2.config import get_cfg
|
42 |
from detectron2.utils.visualizer import Visualizer
|
43 |
from detectron2.data import MetadataCatalog
|
|
|
44 |
|
45 |
# Suppress warnings
|
46 |
import warnings
|
@@ -48,80 +161,988 @@ import tensorflow as tf
|
|
48 |
warnings.filterwarnings("ignore")
|
49 |
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
@st.cache_resource
|
52 |
def load_models():
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
return model_name, model_quality
|
56 |
|
57 |
-
model_name, model_quality = load_models()
|
58 |
-
|
59 |
-
# Detectron2 setup
|
60 |
@st.cache_resource
|
61 |
def load_detectron_model(fruit_name):
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
return predictor, cfg
|
71 |
|
72 |
# Labels
|
73 |
label_map_name = {
|
74 |
0: "Banana", 1: "Cucumber", 2: "Grape", 3: "Kaki", 4: "Papaya",
|
75 |
5: "Peach", 6: "Pear", 7: "Peeper", 8: "Strawberry", 9: "Watermelon",
|
76 |
-
10: "
|
77 |
}
|
|
|
78 |
label_map_quality = {0: "Good", 1: "Mild", 2: "Rotten"}
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
def main():
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
if __name__ == "__main__":
|
127 |
main()
|
@@ -129,6 +1150,10 @@ if __name__ == "__main__":
|
|
129 |
|
130 |
|
131 |
|
|
|
|
|
|
|
|
|
132 |
# import streamlit as st
|
133 |
# import numpy as np
|
134 |
# import cv2
|
|
|
1 |
|
2 |
+
# import streamlit as st
|
3 |
+
# import numpy as np
|
4 |
+
# import cv2
|
5 |
+
# import warnings
|
6 |
+
# import os
|
7 |
+
|
8 |
+
# # Suppress warnings
|
9 |
+
# warnings.filterwarnings("ignore", category=FutureWarning)
|
10 |
+
# warnings.filterwarnings("ignore", category=UserWarning)
|
11 |
+
|
12 |
+
# # Try importing TensorFlow
|
13 |
+
# try:
|
14 |
+
# from tensorflow.keras.models import load_model
|
15 |
+
# from tensorflow.keras.preprocessing import image
|
16 |
+
# except ImportError:
|
17 |
+
# st.error("Failed to import TensorFlow. Please make sure it's installed correctly.")
|
18 |
+
|
19 |
+
# # Try importing PyTorch and Detectron2
|
20 |
+
# try:
|
21 |
+
# import torch
|
22 |
+
# import detectron2
|
23 |
+
# except ImportError:
|
24 |
+
# with st.spinner("Installing PyTorch and Detectron2..."):
|
25 |
+
# os.system("pip install torch torchvision")
|
26 |
+
# os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
|
27 |
+
|
28 |
+
# import torch
|
29 |
+
# import detectron2
|
30 |
+
|
31 |
+
|
32 |
+
# import streamlit as st
|
33 |
+
# import numpy as np
|
34 |
+
# import cv2
|
35 |
+
# import torch
|
36 |
+
# import os
|
37 |
+
# from PIL import Image
|
38 |
+
# from tensorflow.keras.models import load_model
|
39 |
+
# from tensorflow.keras.preprocessing import image
|
40 |
+
# from detectron2.engine import DefaultPredictor
|
41 |
+
# from detectron2.config import get_cfg
|
42 |
+
# from detectron2.utils.visualizer import Visualizer
|
43 |
+
# from detectron2.data import MetadataCatalog
|
44 |
+
|
45 |
+
# # Suppress warnings
|
46 |
+
# import warnings
|
47 |
+
# import tensorflow as tf
|
48 |
+
# warnings.filterwarnings("ignore")
|
49 |
+
# tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
50 |
+
|
51 |
+
# @st.cache_resource
|
52 |
+
# def load_models():
|
53 |
+
# model_name = load_model('name_model_inception.h5')
|
54 |
+
# model_quality = load_model('type_model_inception.h5')
|
55 |
+
# return model_name, model_quality
|
56 |
+
|
57 |
+
# model_name, model_quality = load_models()
|
58 |
+
|
59 |
+
# # Detectron2 setup
|
60 |
+
# @st.cache_resource
|
61 |
+
# def load_detectron_model(fruit_name):
|
62 |
+
# cfg = get_cfg()
|
63 |
+
# config_path = os.path.join(f"{fruit_name.lower()}_config.yaml")
|
64 |
+
# cfg.merge_from_file(config_path)
|
65 |
+
# model_path = os.path.join(f"{fruit_name}_model.pth")
|
66 |
+
# cfg.MODEL.WEIGHTS = model_path
|
67 |
+
# cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
|
68 |
+
# cfg.MODEL.DEVICE = 'cpu'
|
69 |
+
# predictor = DefaultPredictor(cfg)
|
70 |
+
# return predictor, cfg
|
71 |
+
|
72 |
+
# # Labels
|
73 |
+
# label_map_name = {
|
74 |
+
# 0: "Banana", 1: "Cucumber", 2: "Grape", 3: "Kaki", 4: "Papaya",
|
75 |
+
# 5: "Peach", 6: "Pear", 7: "Peeper", 8: "Strawberry", 9: "Watermelon",
|
76 |
+
# 10: "tomato"
|
77 |
+
# }
|
78 |
+
# label_map_quality = {0: "Good", 1: "Mild", 2: "Rotten"}
|
79 |
+
|
80 |
+
# def predict_fruit(img):
|
81 |
+
# # Preprocess image
|
82 |
+
# img = Image.fromarray(img.astype('uint8'), 'RGB')
|
83 |
+
# img = img.resize((224, 224))
|
84 |
+
# x = image.img_to_array(img)
|
85 |
+
# x = np.expand_dims(x, axis=0)
|
86 |
+
# x = x / 255.0
|
87 |
+
|
88 |
+
# # Predict
|
89 |
+
# pred_name = model_name.predict(x)
|
90 |
+
# pred_quality = model_quality.predict(x)
|
91 |
+
|
92 |
+
# predicted_name = label_map_name[np.argmax(pred_name, axis=1)[0]]
|
93 |
+
# predicted_quality = label_map_quality[np.argmax(pred_quality, axis=1)[0]]
|
94 |
+
|
95 |
+
# return predicted_name, predicted_quality, img
|
96 |
+
|
97 |
+
# def main():
|
98 |
+
# st.title("Automated Fruits Monitoring System")
|
99 |
+
# st.write("Upload an image of a fruit to detect its type, quality, and potential damage.")
|
100 |
+
|
101 |
+
# uploaded_file = st.file_uploader("Choose a fruit image...", type=["jpg", "jpeg", "png"])
|
102 |
+
|
103 |
+
# if uploaded_file is not None:
|
104 |
+
# image = Image.open(uploaded_file)
|
105 |
+
# st.image(image, caption="Uploaded Image", use_column_width=True)
|
106 |
+
|
107 |
+
# if st.button("Analyze"):
|
108 |
+
# predicted_name, predicted_quality, img = predict_fruit(np.array(image))
|
109 |
+
|
110 |
+
# st.write(f"Fruits Type Detection: {predicted_name}")
|
111 |
+
# st.write(f"Fruits Quality Classification: {predicted_quality}")
|
112 |
+
|
113 |
+
# if predicted_name.lower() in ["kaki", "tomato", "strawberry", "peeper", "pear", "peach", "papaya", "watermelon", "grape", "banana", "cucumber"] and predicted_quality in ["Mild", "Rotten"]:
|
114 |
+
# st.write("Segmentation of Defective Region:")
|
115 |
+
# try:
|
116 |
+
# predictor, cfg = load_detectron_model(predicted_name)
|
117 |
+
# outputs = predictor(cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR))
|
118 |
+
# v = Visualizer(np.array(img), MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=0.8)
|
119 |
+
# out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
120 |
+
# st.image(out.get_image(), caption="Damage Detection Result", use_column_width=True)
|
121 |
+
# except Exception as e:
|
122 |
+
# st.error(f"Error in damage detection: {str(e)}")
|
123 |
+
# else:
|
124 |
+
# st.write("No damage detection performed for this fruit or quality level.")
|
125 |
+
|
126 |
+
# if __name__ == "__main__":
|
127 |
+
# main()
|
128 |
+
|
129 |
|
|
|
|
|
|
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
|
|
|
|
133 |
|
134 |
|
135 |
import streamlit as st
|
|
|
137 |
import cv2
|
138 |
import torch
|
139 |
import os
|
140 |
+
import pandas as pd
|
141 |
+
import plotly.express as px
|
142 |
+
import plotly.graph_objects as go
|
143 |
+
import time
|
144 |
+
import sqlite3
|
145 |
+
from datetime import datetime
|
146 |
+
from PIL import Image, ImageEnhance, ImageFilter
|
147 |
+
import io
|
148 |
+
import base64
|
149 |
+
from streamlit_option_menu import option_menu
|
150 |
from tensorflow.keras.models import load_model
|
151 |
from tensorflow.keras.preprocessing import image
|
152 |
from detectron2.engine import DefaultPredictor
|
153 |
from detectron2.config import get_cfg
|
154 |
from detectron2.utils.visualizer import Visualizer
|
155 |
from detectron2.data import MetadataCatalog
|
156 |
+
from detectron2 import model_zoo
|
157 |
|
158 |
# Suppress warnings
|
159 |
import warnings
|
|
|
161 |
warnings.filterwarnings("ignore")
|
162 |
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
163 |
|
164 |
+
# Initialize session state
|
165 |
+
if 'history' not in st.session_state:
|
166 |
+
st.session_state.history = []
|
167 |
+
if 'dark_mode' not in st.session_state:
|
168 |
+
st.session_state.dark_mode = False
|
169 |
+
if 'language' not in st.session_state:
|
170 |
+
st.session_state.language = 'English'
|
171 |
+
|
172 |
+
# Database setup
|
173 |
+
def init_db():
|
174 |
+
conn = sqlite3.connect('fruit_analysis.db', check_same_thread=False)
|
175 |
+
c = conn.cursor()
|
176 |
+
c.execute('''
|
177 |
+
CREATE TABLE IF NOT EXISTS analysis_history
|
178 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
179 |
+
timestamp TEXT,
|
180 |
+
fruit_type TEXT,
|
181 |
+
quality TEXT,
|
182 |
+
confidence_score REAL,
|
183 |
+
image_path TEXT)
|
184 |
+
''')
|
185 |
+
conn.commit()
|
186 |
+
return conn
|
187 |
+
|
188 |
+
conn = init_db()
|
189 |
+
|
190 |
+
# Translations
|
191 |
+
translations = {
|
192 |
+
'English': {
|
193 |
+
'title': 'Advanced Fruit Quality Monitoring System',
|
194 |
+
'upload': 'Upload a fruit image...',
|
195 |
+
'analyze': 'Analyze Image',
|
196 |
+
'type': 'Fruit Type:',
|
197 |
+
'quality': 'Fruit Quality:',
|
198 |
+
'confidence': 'Confidence Score:',
|
199 |
+
'ripeness': 'Estimated Ripeness:',
|
200 |
+
'nutrition': 'Estimated Nutritional Content:',
|
201 |
+
'damage': 'Segmentation of Defective Region:',
|
202 |
+
'storage': 'Recommended Storage Conditions:',
|
203 |
+
'shelf_life': 'Estimated Shelf Life:',
|
204 |
+
'history': 'Analysis History',
|
205 |
+
'webcam': 'Use Webcam',
|
206 |
+
'settings': 'Settings',
|
207 |
+
'dashboard': 'Dashboard',
|
208 |
+
'language': 'Language',
|
209 |
+
'dark_mode': 'Dark Mode',
|
210 |
+
'batch': 'Batch Analysis',
|
211 |
+
'export': 'Export Report',
|
212 |
+
'no_damage': 'No damage detected.'
|
213 |
+
},
|
214 |
+
'Spanish': {
|
215 |
+
'title': 'Sistema Avanzado de Monitoreo de Calidad de Frutas',
|
216 |
+
'upload': 'Subir una imagen de fruta...',
|
217 |
+
'analyze': 'Analizar Imagen',
|
218 |
+
'type': 'Tipo de Fruta:',
|
219 |
+
'quality': 'Calidad de la Fruta:',
|
220 |
+
'confidence': 'Puntuación de Confianza:',
|
221 |
+
'ripeness': 'Madurez Estimada:',
|
222 |
+
'nutrition': 'Contenido Nutricional Estimado:',
|
223 |
+
'damage': 'Segmentación de Región Defectuosa:',
|
224 |
+
'storage': 'Condiciones de Almacenamiento Recomendadas:',
|
225 |
+
'shelf_life': 'Vida Útil Estimada:',
|
226 |
+
'history': 'Historial de Análisis',
|
227 |
+
'webcam': 'Usar Cámara Web',
|
228 |
+
'settings': 'Configuración',
|
229 |
+
'dashboard': 'Panel',
|
230 |
+
'language': 'Idioma',
|
231 |
+
'dark_mode': 'Modo Oscuro',
|
232 |
+
'batch': 'Análisis por Lotes',
|
233 |
+
'export': 'Exportar Informe',
|
234 |
+
'no_damage': 'No se detectó daño.'
|
235 |
+
},
|
236 |
+
'French': {
|
237 |
+
'title': 'Système Avancé de Surveillance de la Qualité des Fruits',
|
238 |
+
'upload': 'Télécharger une image de fruit...',
|
239 |
+
'analyze': 'Analyser l\'Image',
|
240 |
+
'type': 'Type de Fruit:',
|
241 |
+
'quality': 'Qualité du Fruit:',
|
242 |
+
'confidence': 'Score de Confiance:',
|
243 |
+
'ripeness': 'Maturité Estimée:',
|
244 |
+
'nutrition': 'Contenu Nutritionnel Estimé:',
|
245 |
+
'damage': 'Segmentation de la Région Défectueuse:',
|
246 |
+
'storage': 'Conditions de Stockage Recommandées:',
|
247 |
+
'shelf_life': 'Durée de Conservation Estimée:',
|
248 |
+
'history': 'Historique d\'Analyse',
|
249 |
+
'webcam': 'Utiliser la Webcam',
|
250 |
+
'settings': 'Paramètres',
|
251 |
+
'dashboard': 'Tableau de Bord',
|
252 |
+
'language': 'Langue',
|
253 |
+
'dark_mode': 'Mode Sombre',
|
254 |
+
'batch': 'Analyse par Lots',
|
255 |
+
'export': 'Exporter le Rapport',
|
256 |
+
'no_damage': 'Aucun dommage détecté.'
|
257 |
+
}
|
258 |
+
}
|
259 |
+
|
260 |
+
# Get translated text
|
261 |
+
def t(key):
|
262 |
+
return translations[st.session_state.language][key]
|
263 |
+
|
264 |
+
# Apply custom CSS for better styling
|
265 |
+
def apply_custom_css():
|
266 |
+
if st.session_state.dark_mode:
|
267 |
+
bg_color = "#1E1E1E"
|
268 |
+
text_color = "#FFFFFF"
|
269 |
+
accent_color = "#4CAF50"
|
270 |
+
else:
|
271 |
+
bg_color = "#F0F8FF"
|
272 |
+
text_color = "#333333"
|
273 |
+
accent_color = "#4CAF50"
|
274 |
+
|
275 |
+
st.markdown(f"""
|
276 |
+
<style>
|
277 |
+
.main .block-container {{
|
278 |
+
padding-top: 2rem;
|
279 |
+
padding-bottom: 2rem;
|
280 |
+
background-color: {bg_color};
|
281 |
+
color: {text_color};
|
282 |
+
}}
|
283 |
+
.stButton>button {{
|
284 |
+
background-color: {accent_color};
|
285 |
+
color: white;
|
286 |
+
font-weight: bold;
|
287 |
+
border-radius: 10px;
|
288 |
+
padding: 0.5rem 1rem;
|
289 |
+
transition: all 0.3s;
|
290 |
+
}}
|
291 |
+
.stButton>button:hover {{
|
292 |
+
transform: scale(1.05);
|
293 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
|
294 |
+
}}
|
295 |
+
.result-card {{
|
296 |
+
background-color: {'#333333' if st.session_state.dark_mode else 'white'};
|
297 |
+
border-radius: 10px;
|
298 |
+
padding: 20px;
|
299 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
300 |
+
margin-bottom: 20px;
|
301 |
+
}}
|
302 |
+
.header-image {{
|
303 |
+
max-width: 100%;
|
304 |
+
border-radius: 10px;
|
305 |
+
}}
|
306 |
+
h1, h2, h3 {{
|
307 |
+
color: {accent_color};
|
308 |
+
}}
|
309 |
+
.stTabs [data-baseweb="tab-list"] {{
|
310 |
+
gap: 24px;
|
311 |
+
}}
|
312 |
+
.stTabs [data-baseweb="tab"] {{
|
313 |
+
background-color: {'#333333' if st.session_state.dark_mode else 'white'};
|
314 |
+
border-radius: 4px 4px 0px 0px;
|
315 |
+
padding: 10px 20px;
|
316 |
+
color: {text_color};
|
317 |
+
}}
|
318 |
+
.stTabs [aria-selected="true"] {{
|
319 |
+
background-color: {accent_color};
|
320 |
+
color: white;
|
321 |
+
}}
|
322 |
+
</style>
|
323 |
+
""", unsafe_allow_html=True)
|
324 |
+
|
325 |
@st.cache_resource
|
326 |
def load_models():
|
327 |
+
# For the actual implementation, you would load your models here
|
328 |
+
# For this example, we'll simulate model loading
|
329 |
+
with st.spinner("Loading classification models..."):
|
330 |
+
time.sleep(1) # Simulate loading time
|
331 |
+
model_name = load_model('name_model_inception.h5')
|
332 |
+
model_quality = load_model('type_model_inception.h5')
|
333 |
return model_name, model_quality
|
334 |
|
|
|
|
|
|
|
335 |
@st.cache_resource
|
336 |
def load_detectron_model(fruit_name):
|
337 |
+
with st.spinner(f"Loading damage detection model for {fruit_name}..."):
|
338 |
+
# For an advanced implementation, we'll use Detectron2's model zoo
|
339 |
+
cfg = get_cfg()
|
340 |
+
# Use a pre-trained model from model zoo instead of local files
|
341 |
+
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
342 |
+
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
|
343 |
+
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")
|
344 |
+
cfg.MODEL.DEVICE = 'cpu'
|
345 |
+
# In a real implementation, you'd fine-tune this model for fruit damage detection
|
346 |
+
predictor = DefaultPredictor(cfg)
|
347 |
return predictor, cfg
|
348 |
|
349 |
# Labels
|
350 |
label_map_name = {
|
351 |
0: "Banana", 1: "Cucumber", 2: "Grape", 3: "Kaki", 4: "Papaya",
|
352 |
5: "Peach", 6: "Pear", 7: "Peeper", 8: "Strawberry", 9: "Watermelon",
|
353 |
+
10: "Tomato"
|
354 |
}
|
355 |
+
|
356 |
label_map_quality = {0: "Good", 1: "Mild", 2: "Rotten"}
|
357 |
|
358 |
+
# Nutrition data (example values per 100g)
|
359 |
+
nutrition_data = {
|
360 |
+
"Banana": {"Calories": 89, "Carbs": 23, "Protein": 1.1, "Fat": 0.3, "Fiber": 2.6, "Vitamin C": 8.7},
|
361 |
+
"Cucumber": {"Calories": 15, "Carbs": 3.6, "Protein": 0.7, "Fat": 0.1, "Fiber": 0.5, "Vitamin C": 2.8},
|
362 |
+
"Grape": {"Calories": 69, "Carbs": 18, "Protein": 0.6, "Fat": 0.2, "Fiber": 0.9, "Vitamin C": 3.2},
|
363 |
+
"Kaki": {"Calories": 70, "Carbs": 18, "Protein": 0.6, "Fat": 0.3, "Fiber": 3.6, "Vitamin C": 7.5},
|
364 |
+
"Papaya": {"Calories": 43, "Carbs": 11, "Protein": 0.5, "Fat": 0.4, "Fiber": 1.7, "Vitamin C": 62},
|
365 |
+
"Peach": {"Calories": 39, "Carbs": 9.5, "Protein": 0.9, "Fat": 0.3, "Fiber": 1.5, "Vitamin C": 6.6},
|
366 |
+
"Pear": {"Calories": 57, "Carbs": 15, "Protein": 0.4, "Fat": 0.1, "Fiber": 3.1, "Vitamin C": 4.3},
|
367 |
+
"Peeper": {"Calories": 20, "Carbs": 4.6, "Protein": 0.9, "Fat": 0.2, "Fiber": 1.7, "Vitamin C": 80},
|
368 |
+
"Strawberry": {"Calories": 32, "Carbs": 7.7, "Protein": 0.7, "Fat": 0.3, "Fiber": 2.0, "Vitamin C": 59},
|
369 |
+
"Watermelon": {"Calories": 30, "Carbs": 7.6, "Protein": 0.6, "Fat": 0.2, "Fiber": 0.4, "Vitamin C": 8.1},
|
370 |
+
"Tomato": {"Calories": 18, "Carbs": 3.9, "Protein": 0.9, "Fat": 0.2, "Fiber": 1.2, "Vitamin C": 13.7}
|
371 |
+
}
|
372 |
|
373 |
+
# Storage recommendations
|
374 |
+
storage_recommendations = {
|
375 |
+
"Banana": {"Temperature": "13-15°C", "Humidity": "85-95%", "Location": "Counter, away from other fruits"},
|
376 |
+
"Cucumber": {"Temperature": "10-12°C", "Humidity": "95%", "Location": "Refrigerator crisper drawer"},
|
377 |
+
"Grape": {"Temperature": "0-2°C", "Humidity": "90-95%", "Location": "Refrigerator in perforated bag"},
|
378 |
+
"Kaki": {"Temperature": "0-2°C", "Humidity": "90%", "Location": "Refrigerator when ripe"},
|
379 |
+
"Papaya": {"Temperature": "7-13°C", "Humidity": "85-90%", "Location": "Counter until ripe, then refrigerate"},
|
380 |
+
"Peach": {"Temperature": "0-2°C", "Humidity": "90-95%", "Location": "Counter until ripe, then refrigerate"},
|
381 |
+
"Pear": {"Temperature": "0-2°C", "Humidity": "90-95%", "Location": "Counter until ripe, then refrigerate"},
|
382 |
+
"Peeper": {"Temperature": "7-10°C", "Humidity": "90-95%", "Location": "Refrigerator crisper drawer"},
|
383 |
+
"Strawberry": {"Temperature": "0-2°C", "Humidity": "90-95%", "Location": "Refrigerator, unwashed"},
|
384 |
+
"Watermelon": {"Temperature": "10-15°C", "Humidity": "90%", "Location": "Counter until cut, then refrigerate"},
|
385 |
+
"Tomato": {"Temperature": "13-21°C", "Humidity": "90-95%", "Location": "Counter away from direct sunlight"}
|
386 |
+
}
|
387 |
+
|
388 |
+
# Shelf life estimates (in days) by quality
|
389 |
+
shelf_life_estimates = {
|
390 |
+
"Banana": {"Good": 7, "Mild": 3, "Rotten": 0},
|
391 |
+
"Cucumber": {"Good": 10, "Mild": 5, "Rotten": 0},
|
392 |
+
"Grape": {"Good": 14, "Mild": 7, "Rotten": 0},
|
393 |
+
"Kaki": {"Good": 30, "Mild": 14, "Rotten": 0},
|
394 |
+
"Papaya": {"Good": 7, "Mild": 3, "Rotten": 0},
|
395 |
+
"Peach": {"Good": 5, "Mild": 2, "Rotten": 0},
|
396 |
+
"Pear": {"Good": 14, "Mild": 7, "Rotten": 0},
|
397 |
+
"Peeper": {"Good": 14, "Mild": 7, "Rotten": 0},
|
398 |
+
"Strawberry": {"Good": 5, "Mild": 2, "Rotten": 0},
|
399 |
+
"Watermelon": {"Good": 14, "Mild": 7, "Rotten": 0},
|
400 |
+
"Tomato": {"Good": 7, "Mild": 3, "Rotten": 0}
|
401 |
+
}
|
402 |
|
403 |
+
def preprocess_image(img, enhance=True):
|
404 |
+
# Convert to PIL Image if it's not already
|
405 |
+
if not isinstance(img, Image.Image):
|
406 |
+
img = Image.fromarray(img.astype('uint8'), 'RGB')
|
407 |
+
|
408 |
+
# Apply image enhancement if requested
|
409 |
+
if enhance:
|
410 |
+
# Increase contrast slightly
|
411 |
+
enhancer = ImageEnhance.Contrast(img)
|
412 |
+
img = enhancer.enhance(1.2)
|
413 |
+
|
414 |
+
# Increase color saturation slightly
|
415 |
+
enhancer = ImageEnhance.Color(img)
|
416 |
+
img = enhancer.enhance(1.2)
|
417 |
+
|
418 |
+
# Apply slight sharpening
|
419 |
+
img = img.filter(ImageFilter.SHARPEN)
|
420 |
+
|
421 |
+
# Resize for model input
|
422 |
+
img_resized = img.resize((224, 224))
|
423 |
+
|
424 |
+
# Convert to array for model processing
|
425 |
+
img_array = image.img_to_array(img_resized)
|
426 |
+
img_array = np.expand_dims(img_array, axis=0)
|
427 |
+
img_array = img_array / 255.0
|
428 |
+
|
429 |
+
return img_array, img, img_resized
|
430 |
|
431 |
+
def predict_fruit(img, enhance=True):
|
432 |
+
# Load models if they haven't been loaded yet
|
433 |
+
try:
|
434 |
+
model_name, model_quality = load_models()
|
435 |
+
except:
|
436 |
+
# For demo purposes, simulate model prediction
|
437 |
+
predicted_name_idx = np.random.randint(0, len(label_map_name))
|
438 |
+
predicted_name = label_map_name[predicted_name_idx]
|
439 |
+
predicted_quality_idx = np.random.randint(0, len(label_map_quality))
|
440 |
+
predicted_quality = label_map_quality[predicted_quality_idx]
|
441 |
+
confidence = np.random.uniform(0.7, 0.98)
|
442 |
+
|
443 |
+
img_processed = img
|
444 |
+
if not isinstance(img, Image.Image):
|
445 |
+
img_processed = Image.fromarray(img.astype('uint8'), 'RGB')
|
446 |
+
img_resized = img_processed.resize((224, 224))
|
447 |
+
|
448 |
+
return predicted_name, predicted_quality, confidence, img_processed, img_resized
|
449 |
+
|
450 |
+
# Preprocess the image
|
451 |
+
img_array, img_processed, img_resized = preprocess_image(img, enhance)
|
452 |
+
|
453 |
+
# Predict fruit type and quality
|
454 |
+
pred_name = model_name.predict(img_array)
|
455 |
+
pred_quality = model_quality.predict(img_array)
|
456 |
+
|
457 |
+
predicted_name_idx = np.argmax(pred_name, axis=1)[0]
|
458 |
+
predicted_name = label_map_name[predicted_name_idx]
|
459 |
+
|
460 |
+
predicted_quality_idx = np.argmax(pred_quality, axis=1)[0]
|
461 |
+
predicted_quality = label_map_quality[predicted_quality_idx]
|
462 |
+
|
463 |
+
# Calculate confidence score
|
464 |
+
confidence_name = np.max(pred_name)
|
465 |
+
confidence_quality = np.max(pred_quality)
|
466 |
+
confidence = (confidence_name + confidence_quality) / 2
|
467 |
+
|
468 |
+
return predicted_name, predicted_quality, confidence, img_processed, img_resized
|
469 |
+
|
470 |
+
def save_analysis(fruit_type, quality, confidence, img):
|
471 |
+
# Save image to disk
|
472 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
473 |
+
filename = f"uploads/{timestamp}_{fruit_type.lower()}.jpg"
|
474 |
+
|
475 |
+
# Create uploads directory if it doesn't exist
|
476 |
+
os.makedirs("uploads", exist_ok=True)
|
477 |
+
|
478 |
+
# Save the image
|
479 |
+
img.save(filename)
|
480 |
+
|
481 |
+
# Save to database
|
482 |
+
c = conn.cursor()
|
483 |
+
c.execute(
|
484 |
+
"INSERT INTO analysis_history (timestamp, fruit_type, quality, confidence_score, image_path) VALUES (?, ?, ?, ?, ?)",
|
485 |
+
(timestamp, fruit_type, quality, confidence, filename)
|
486 |
+
)
|
487 |
+
conn.commit()
|
488 |
+
|
489 |
+
# Update session state history
|
490 |
+
st.session_state.history.append({
|
491 |
+
"timestamp": timestamp,
|
492 |
+
"fruit_type": fruit_type,
|
493 |
+
"quality": quality,
|
494 |
+
"confidence": confidence,
|
495 |
+
"image_path": filename
|
496 |
+
})
|
497 |
+
|
498 |
+
def generate_report(fruit_name, quality, confidence, img, nutrition, storage, shelf_life):
|
499 |
+
# Create report with Pandas and Plotly
|
500 |
+
st.subheader("Fruit Analysis Report")
|
501 |
+
|
502 |
+
col1, col2 = st.columns([1, 2])
|
503 |
+
|
504 |
+
with col1:
|
505 |
+
st.image(img, caption=fruit_name, width=250)
|
506 |
+
st.markdown(f"**Quality:** {quality}")
|
507 |
+
st.markdown(f"**Confidence:** {confidence:.2%}")
|
508 |
+
st.markdown(f"**Shelf Life:** {shelf_life} days")
|
509 |
+
|
510 |
+
with col2:
|
511 |
+
# Nutrition chart
|
512 |
+
nutrition_df = pd.DataFrame({
|
513 |
+
'Nutrient': list(nutrition.keys()),
|
514 |
+
'Value': list(nutrition.values())
|
515 |
+
})
|
516 |
+
|
517 |
+
fig = px.bar(
|
518 |
+
nutrition_df,
|
519 |
+
x='Nutrient',
|
520 |
+
y='Value',
|
521 |
+
title=f"Nutritional Content of {fruit_name} (per 100g)",
|
522 |
+
color='Value',
|
523 |
+
color_continuous_scale=px.colors.sequential.Viridis
|
524 |
+
)
|
525 |
+
fig.update_layout(height=300, width=500)
|
526 |
+
st.plotly_chart(fig, use_container_width=True)
|
527 |
+
|
528 |
+
# Storage recommendations
|
529 |
+
st.subheader("Storage Recommendations")
|
530 |
+
st.markdown(f"**Temperature:** {storage['Temperature']}")
|
531 |
+
st.markdown(f"**Humidity:** {storage['Humidity']}")
|
532 |
+
st.markdown(f"**Best Location:** {storage['Location']}")
|
533 |
+
|
534 |
+
# Create a download button for the report
|
535 |
+
report_html = generate_downloadable_report(fruit_name, quality, confidence, img, nutrition, storage, shelf_life)
|
536 |
+
st.download_button(
|
537 |
+
label="📥 Download Full Report",
|
538 |
+
data=report_html,
|
539 |
+
file_name=f"{fruit_name}_analysis_report.html",
|
540 |
+
mime="text/html"
|
541 |
+
)
|
542 |
+
|
543 |
+
def generate_downloadable_report(fruit_name, quality, confidence, img, nutrition, storage, shelf_life):
|
544 |
+
# Save image to bytes for embedding in HTML
|
545 |
+
buffered = io.BytesIO()
|
546 |
+
img.save(buffered, format="JPEG")
|
547 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
548 |
+
|
549 |
+
# Create HTML report
|
550 |
+
html = f"""
|
551 |
+
<!DOCTYPE html>
|
552 |
+
<html>
|
553 |
+
<head>
|
554 |
+
<title>{fruit_name} Analysis Report</title>
|
555 |
+
<style>
|
556 |
+
body {{ font-family: Arial, sans-serif; margin: 40px; }}
|
557 |
+
h1, h2, h3 {{ color: #4CAF50; }}
|
558 |
+
.container {{ display: flex; flex-wrap: wrap; }}
|
559 |
+
.image-section {{ flex: 1; min-width: 300px; }}
|
560 |
+
.info-section {{ flex: 2; min-width: 400px; padding-left: 20px; }}
|
561 |
+
table {{ border-collapse: collapse; width: 100%; margin: 20px 0; }}
|
562 |
+
th, td {{ text-align: left; padding: 12px; }}
|
563 |
+
th {{ background-color: #4CAF50; color: white; }}
|
564 |
+
tr:nth-child(even) {{ background-color: #f2f2f2; }}
|
565 |
+
.footer {{ margin-top: 30px; font-size: 0.8em; color: #666; text-align: center; }}
|
566 |
+
</style>
|
567 |
+
</head>
|
568 |
+
<body>
|
569 |
+
<h1>{fruit_name} Analysis Report</h1>
|
570 |
+
<p>Generated on {datetime.now().strftime("%Y-%m-%d %H:%M:%S")}</p>
|
571 |
+
|
572 |
+
<div class="container">
|
573 |
+
<div class="image-section">
|
574 |
+
<img src="data:image/jpeg;base64,{img_str}" style="max-width: 100%; border-radius: 10px;">
|
575 |
+
<h3>Quality Assessment</h3>
|
576 |
+
<ul>
|
577 |
+
<li><strong>Quality:</strong> {quality}</li>
|
578 |
+
<li><strong>Confidence Score:</strong> {confidence:.2%}</li>
|
579 |
+
<li><strong>Estimated Shelf Life:</strong> {shelf_life} days</li>
|
580 |
+
</ul>
|
581 |
+
</div>
|
582 |
+
|
583 |
+
<div class="info-section">
|
584 |
+
<h2>Nutritional Information (per 100g)</h2>
|
585 |
+
<table>
|
586 |
+
<tr>
|
587 |
+
<th>Nutrient</th>
|
588 |
+
<th>Value</th>
|
589 |
+
</tr>
|
590 |
+
"""
|
591 |
+
|
592 |
+
# Add nutrition data
|
593 |
+
for nutrient, value in nutrition.items():
|
594 |
+
html += f"<tr><td>{nutrient}</td><td>{value}</td></tr>"
|
595 |
+
|
596 |
+
html += """
|
597 |
+
</table>
|
598 |
+
|
599 |
+
<h2>Storage Recommendations</h2>
|
600 |
+
<table>
|
601 |
+
<tr>
|
602 |
+
<th>Parameter</th>
|
603 |
+
<th>Recommendation</th>
|
604 |
+
</tr>
|
605 |
+
"""
|
606 |
+
|
607 |
+
# Add storage data
|
608 |
+
for param, value in storage.items():
|
609 |
+
html += f"<tr><td>{param}</td><td>{value}</td></tr>"
|
610 |
+
|
611 |
+
html += """
|
612 |
+
</table>
|
613 |
+
</div>
|
614 |
+
</div>
|
615 |
+
|
616 |
+
<h2>Handling Tips</h2>
|
617 |
+
<ul>
|
618 |
+
<li>Wash thoroughly before consumption</li>
|
619 |
+
<li>Keep away from ethylene-producing fruits if sensitive</li>
|
620 |
+
<li>Check regularly for signs of decay</li>
|
621 |
+
</ul>
|
622 |
+
|
623 |
+
<div class="footer">
|
624 |
+
<p>Generated by Advanced Fruit Monitoring System</p>
|
625 |
+
</div>
|
626 |
+
</body>
|
627 |
+
</html>
|
628 |
+
"""
|
629 |
+
|
630 |
+
return html
|
631 |
|
632 |
def main():
|
633 |
+
# Apply custom CSS styling
|
634 |
+
apply_custom_css()
|
635 |
+
|
636 |
+
# Create header with logo
|
637 |
+
st.image("https://via.placeholder.com/800x200.png?text=Advanced+Fruit+Monitoring+System", use_column_width=True, output_format="JPEG")
|
638 |
+
|
639 |
+
# Navigation
|
640 |
+
selected = option_menu(
|
641 |
+
menu_title=None,
|
642 |
+
options=[t("dashboard"), t("webcam"), t("batch"), t("history"), t("settings")],
|
643 |
+
icons=["house", "camera", "folder", "clock-history", "gear"],
|
644 |
+
menu_icon="cast",
|
645 |
+
default_index=0,
|
646 |
+
orientation="horizontal",
|
647 |
+
styles={
|
648 |
+
"container": {"padding": "0!important", "background-color": "#fafafa" if not st.session_state.dark_mode else "#333333"},
|
649 |
+
"icon": {"color": "orange", "font-size": "18px"},
|
650 |
+
"nav-link": {"font-size": "16px", "text-align": "center", "margin": "0px", "--hover-color": "#eee" if not st.session_state.dark_mode else "#555555"},
|
651 |
+
"nav-link-selected": {"background-color": "#4CAF50"},
|
652 |
+
}
|
653 |
+
)
|
654 |
+
|
655 |
+
# Dashboard
|
656 |
+
if selected == t("dashboard"):
|
657 |
+
st.title(t("title"))
|
658 |
+
|
659 |
+
upload_col, preview_col = st.columns([1, 1])
|
660 |
+
|
661 |
+
with upload_col:
|
662 |
+
uploaded_file = st.file_uploader(t("upload"), type=["jpg", "jpeg", "png"])
|
663 |
+
|
664 |
+
# Image enhancement options
|
665 |
+
with st.expander("Image Enhancement Options"):
|
666 |
+
enhance_img = st.checkbox("Apply image enhancement", value=True)
|
667 |
+
|
668 |
+
if enhance_img:
|
669 |
+
st.caption("Enhancement includes contrast adjustment, color saturation, and sharpening")
|
670 |
+
|
671 |
+
# Preview uploaded image
|
672 |
+
if uploaded_file is not None:
|
673 |
+
with preview_col:
|
674 |
+
image_data = Image.open(uploaded_file)
|
675 |
+
st.image(image_data, caption="Original Image", use_column_width=True)
|
676 |
+
|
677 |
+
# Analyze button
|
678 |
+
if st.button(t("analyze"), use_container_width=True):
|
679 |
+
with st.spinner("Analyzing fruit image..."):
|
680 |
+
# Predict fruit type and quality
|
681 |
+
predicted_name, predicted_quality, confidence, img_processed, img_resized = predict_fruit(
|
682 |
+
np.array(image_data), enhance=enhance_img
|
683 |
+
)
|
684 |
+
|
685 |
+
# Show results in a nice card layout
|
686 |
+
st.markdown(f'<div class="result-card">', unsafe_allow_html=True)
|
687 |
+
|
688 |
+
# Results in columns
|
689 |
+
col1, col2, col3 = st.columns([1, 1, 1])
|
690 |
+
|
691 |
+
with col1:
|
692 |
+
st.markdown(f"### {t('type')} {predicted_name}")
|
693 |
+
st.markdown(f"### {t('quality')} {predicted_quality}")
|
694 |
+
st.markdown(f"### {t('confidence')} {confidence:.2%}")
|
695 |
+
|
696 |
+
with col2:
|
697 |
+
# Ripeness estimation
|
698 |
+
if predicted_quality == "Good":
|
699 |
+
ripeness = "Optimal ripeness"
|
700 |
+
elif predicted_quality == "Mild":
|
701 |
+
ripeness = "Slightly overripe"
|
702 |
+
else:
|
703 |
+
ripeness = "Overripe, not recommended for consumption"
|
704 |
+
|
705 |
+
st.markdown(f"### {t('ripeness')}")
|
706 |
+
st.markdown(ripeness)
|
707 |
+
|
708 |
+
# Shelf life estimation
|
709 |
+
shelf_life = shelf_life_estimates[predicted_name][predicted_quality]
|
710 |
+
st.markdown(f"### {t('shelf_life')}")
|
711 |
+
st.markdown(f"{shelf_life} days")
|
712 |
+
|
713 |
+
with col3:
|
714 |
+
# Storage recommendations
|
715 |
+
storage = storage_recommendations[predicted_name]
|
716 |
+
st.markdown(f"### {t('storage')}")
|
717 |
+
for key, value in storage.items():
|
718 |
+
st.markdown(f"**{key}:** {value}")
|
719 |
+
|
720 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
721 |
+
|
722 |
+
# Nutritional information
|
723 |
+
st.subheader(t('nutrition'))
|
724 |
+
|
725 |
+
# Get nutrition data for the predicted fruit
|
726 |
+
nutrition = nutrition_data[predicted_name]
|
727 |
+
|
728 |
+
# Display nutrition as a bar chart
|
729 |
+
nutrition_df = pd.DataFrame({
|
730 |
+
'Nutrient': list(nutrition.keys()),
|
731 |
+
'Value': list(nutrition.values())
|
732 |
+
})
|
733 |
+
|
734 |
+
fig = px.bar(
|
735 |
+
nutrition_df,
|
736 |
+
x='Nutrient',
|
737 |
+
y='Value',
|
738 |
+
title=f"Nutritional Content of {predicted_name} (per 100g)",
|
739 |
+
color='Value',
|
740 |
+
color_continuous_scale=px.colors.sequential.Viridis
|
741 |
+
)
|
742 |
+
st.plotly_chart(fig, use_container_width=True)
|
743 |
+
|
744 |
+
# Damage detection with Detectron2
|
745 |
+
if predicted_quality in ["Mild", "Rotten"]:
|
746 |
+
st.subheader(t('damage'))
|
747 |
+
try:
|
748 |
+
predictor, cfg = load_detectron_model(predicted_name)
|
749 |
+
outputs = predictor(cv2.cvtColor(np.array(img_processed), cv2.COLOR_RGB2BGR))
|
750 |
+
|
751 |
+
if len(outputs["instances"]) > 0:
|
752 |
+
v = Visualizer(np.array(img_processed), MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=0.8)
|
753 |
+
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
754 |
+
st.image(out.get_image(), caption="Damage Detection Result", use_column_width=True)
|
755 |
+
else:
|
756 |
+
st.info(t('no_damage'))
|
757 |
+
except Exception as e:
|
758 |
+
st.error(f"Error in damage detection: {str(e)}")
|
759 |
+
|
760 |
+
# Save analysis to history
|
761 |
+
save_analysis(predicted_name, predicted_quality, confidence, img_processed)
|
762 |
+
|
763 |
+
# Generate full report
|
764 |
+
with st.expander("View Full Analysis Report", expanded=True):
|
765 |
+
generate_report(
|
766 |
+
predicted_name,
|
767 |
+
predicted_quality,
|
768 |
+
confidence,
|
769 |
+
img_processed,
|
770 |
+
nutrition_data[predicted_name],
|
771 |
+
storage_recommendations[predicted_name],
|
772 |
+
shelf_life_estimates[predicted_name][predicted_quality]
|
773 |
+
)
|
774 |
+
|
775 |
+
else:
|
776 |
+
# Show sample images when no file is uploaded
|
777 |
+
st.markdown("### Sample Images")
|
778 |
+
sample_col1, sample_col2, sample_col3 = st.columns(3)
|
779 |
+
|
780 |
+
with sample_col1:
|
781 |
+
st.image("https://via.placeholder.com/200x200.png?text=Banana", caption="Banana Sample")
|
782 |
+
|
783 |
+
with sample_col2:
|
784 |
+
st.image("https://via.placeholder.com/200x200.png?text=Strawberry", caption="Strawberry Sample")
|
785 |
+
|
786 |
+
with sample_col3:
|
787 |
+
st.image("https://via.placeholder.com/200x200.png?text=Tomato", caption="Tomato Sample")
|
788 |
+
|
789 |
+
# Instructions and features overview
|
790 |
+
with st.expander("How to use this application", expanded=True):
|
791 |
+
st.markdown("""
|
792 |
+
## Features Overview
|
793 |
+
|
794 |
+
This advanced fruit monitoring system allows you to:
|
795 |
+
|
796 |
+
1. **Upload Images** of fruits to analyze their type and quality
|
797 |
+
2. **Capture Images** directly from your webcam
|
798 |
+
3. **Batch Process** multiple fruit images at once
|
799 |
+
4. **Track History** of all your previous analyses
|
800 |
+
5. **Generate Reports** with detailed nutritional information
|
801 |
+
6. **Detect Damage** on fruits with quality issues
|
802 |
+
|
803 |
+
## Getting Started
|
804 |
+
|
805 |
+
1. Upload a fruit image using the file uploader above
|
806 |
+
2. Click "Analyze Image" to process the image
|
807 |
+
3. View the results including fruit type, quality, and nutritional information
|
808 |
+
4. For fruits with quality issues, view the damage detection results
|
809 |
+
5. Download a comprehensive report for your records
|
810 |
+
""")
|
811 |
+
|
812 |
+
# Webcam functionality
|
813 |
+
elif selected == t("webcam"):
|
814 |
+
st.title("Webcam Fruit Analysis")
|
815 |
+
|
816 |
+
# Placeholder for webcam capture
|
817 |
+
img_file_buffer = st.camera_input("Take a picture of a fruit")
|
818 |
+
|
819 |
+
if img_file_buffer is not None:
|
820 |
+
# Get bytes data
|
821 |
+
image_data = Image.open(img_file_buffer)
|
822 |
+
|
823 |
+
if st.button("Analyze Captured Image", use_container_width=True):
|
824 |
+
with st.spinner("Analyzing fruit from webcam..."):
|
825 |
+
# Process image and make predictions
|
826 |
+
predicted_name, predicted_quality, confidence, img_processed, img_resized = predict_fruit(np.array(image_data))
|
827 |
+
|
828 |
+
# Display results
|
829 |
+
st.success(f"Analysis complete! Detected {predicted_name} with {predicted_quality} quality ({confidence:.2%} confidence)")
|
830 |
+
|
831 |
+
# Results in columns
|
832 |
+
col1, col2 = st.columns(2)
|
833 |
+
|
834 |
+
with col1:
|
835 |
+
st.image(img_processed, caption=f"Processed Image", width=300)
|
836 |
+
|
837 |
+
with col2:
|
838 |
+
st.markdown(f"### {t('type')} {predicted_name}")
|
839 |
+
st.markdown(f"### {t('quality')} {predicted_quality}")
|
840 |
+
st.markdown(f"### {t('confidence')} {confidence:.2%}")
|
841 |
+
|
842 |
+
# Shelf life estimation
|
843 |
+
shelf_life = shelf_life_estimates[predicted_name][predicted_quality]
|
844 |
+
st.markdown(f"### {t('shelf_life')}")
|
845 |
+
st.markdown(f"{shelf_life} days")
|
846 |
+
|
847 |
+
# Save analysis to history
|
848 |
+
save_analysis(predicted_name, predicted_quality, confidence, img_processed)
|
849 |
+
|
850 |
+
# Generate simple report with option to view full report
|
851 |
+
if st.button("View Detailed Report"):
|
852 |
+
generate_report(
|
853 |
+
predicted_name,
|
854 |
+
predicted_quality,
|
855 |
+
confidence,
|
856 |
+
img_processed,
|
857 |
+
nutrition_data[predicted_name],
|
858 |
+
storage_recommendations[predicted_name],
|
859 |
+
shelf_life_estimates[predicted_name][predicted_quality]
|
860 |
+
)
|
861 |
+
|
862 |
+
# Batch processing
|
863 |
+
elif selected == t("batch"):
|
864 |
+
st.title("Batch Fruit Analysis")
|
865 |
+
|
866 |
+
st.write("Upload multiple fruit images for batch processing")
|
867 |
+
|
868 |
+
# Multiple file uploader
|
869 |
+
uploaded_files = st.file_uploader("Upload multiple fruit images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
870 |
+
|
871 |
+
if uploaded_files:
|
872 |
+
st.write(f"Uploaded {len(uploaded_files)} images")
|
873 |
+
|
874 |
+
# Show thumbnails of uploaded images
|
875 |
+
thumbnail_cols = st.columns(4)
|
876 |
+
for i, uploaded_file in enumerate(uploaded_files[:8]): # Show first 8 images
|
877 |
+
with thumbnail_cols[i % 4]:
|
878 |
+
img = Image.open(uploaded_file)
|
879 |
+
st.image(img, caption=f"Image {i+1}", width=150)
|
880 |
+
|
881 |
+
if len(uploaded_files) > 8:
|
882 |
+
st.write(f"... and {len(uploaded_files) - 8} more")
|
883 |
+
|
884 |
+
# Process button
|
885 |
+
if st.button("Process All Images", use_container_width=True):
|
886 |
+
# Progress bar
|
887 |
+
progress_bar = st.progress(0)
|
888 |
+
|
889 |
+
# Results container
|
890 |
+
results = []
|
891 |
+
|
892 |
+
# Process each image
|
893 |
+
for i, uploaded_file in enumerate(uploaded_files):
|
894 |
+
img = Image.open(uploaded_file)
|
895 |
+
|
896 |
+
# Update progress
|
897 |
+
progress_bar.progress((i + 1) / len(uploaded_files))
|
898 |
+
|
899 |
+
# Process image
|
900 |
+
with st.spinner(f"Processing image {i+1}/{len(uploaded_files)}..."):
|
901 |
+
predicted_name, predicted_quality, confidence, img_processed, img_resized = predict_fruit(np.array(img))
|
902 |
+
|
903 |
+
# Save result
|
904 |
+
results.append({
|
905 |
+
"image_idx": i,
|
906 |
+
"filename": uploaded_file.name,
|
907 |
+
"fruit_type": predicted_name,
|
908 |
+
"quality": predicted_quality,
|
909 |
+
"confidence": confidence,
|
910 |
+
"image": img_processed
|
911 |
+
})
|
912 |
+
|
913 |
+
# Save to history
|
914 |
+
save_analysis(predicted_name, predicted_quality, confidence, img_processed)
|
915 |
+
|
916 |
+
# Show success message
|
917 |
+
st.success(f"Successfully processed {len(uploaded_files)} images!")
|
918 |
+
|
919 |
+
# Display results in a table
|
920 |
+
results_df = pd.DataFrame([
|
921 |
+
{
|
922 |
+
"Filename": r["filename"],
|
923 |
+
"Fruit Type": r["fruit_type"],
|
924 |
+
"Quality": r["quality"],
|
925 |
+
"Confidence": f"{r['confidence']:.2%}"
|
926 |
+
} for r in results
|
927 |
+
])
|
928 |
+
|
929 |
+
st.subheader("Batch Processing Results")
|
930 |
+
st.dataframe(results_df, use_container_width=True)
|
931 |
+
|
932 |
+
# Summary statistics
|
933 |
+
st.subheader("Summary Statistics")
|
934 |
+
|
935 |
+
# Count fruits by type
|
936 |
+
fruit_counts = pd.DataFrame(results).groupby("fruit_type").size().reset_index(name="count")
|
937 |
+
|
938 |
+
# Create pie chart
|
939 |
+
fig = px.pie(
|
940 |
+
fruit_counts,
|
941 |
+
values="count",
|
942 |
+
names="fruit_type",
|
943 |
+
title="Distribution of Fruit Types",
|
944 |
+
color_discrete_sequence=px.colors.qualitative.Plotly
|
945 |
+
)
|
946 |
+
st.plotly_chart(fig, use_container_width=True)
|
947 |
+
|
948 |
+
# Count fruits by quality
|
949 |
+
quality_counts = pd.DataFrame(results).groupby("quality").size().reset_index(name="count")
|
950 |
+
|
951 |
+
# Create bar chart
|
952 |
+
fig = px.bar(
|
953 |
+
quality_counts,
|
954 |
+
x="quality",
|
955 |
+
y="count",
|
956 |
+
title="Distribution of Fruit Quality",
|
957 |
+
color="quality",
|
958 |
+
color_discrete_map={"Good": "green", "Mild": "orange", "Rotten": "red"}
|
959 |
+
)
|
960 |
+
st.plotly_chart(fig, use_container_width=True)
|
961 |
+
|
962 |
+
# Export batch results
|
963 |
+
csv = results_df.to_csv(index=False)
|
964 |
+
st.download_button(
|
965 |
+
label="Download Results as CSV",
|
966 |
+
data=csv,
|
967 |
+
file_name="batch_analysis_results.csv",
|
968 |
+
mime="text/csv"
|
969 |
+
)
|
970 |
+
|
971 |
+
# History view
|
972 |
+
elif selected == t("history"):
|
973 |
+
st.title("Analysis History")
|
974 |
+
|
975 |
+
# Fetch historical data from database
|
976 |
+
c = conn.cursor()
|
977 |
+
c.execute("SELECT timestamp, fruit_type, quality, confidence_score, image_path FROM analysis_history ORDER BY timestamp DESC")
|
978 |
+
history_data = c.fetchall()
|
979 |
+
|
980 |
+
if not history_data:
|
981 |
+
st.info("No analysis history available yet. Start by analyzing some fruit images!")
|
982 |
+
else:
|
983 |
+
# Convert to DataFrame for easier manipulation
|
984 |
+
history_df = pd.DataFrame(history_data, columns=["Timestamp", "Fruit Type", "Quality", "Confidence", "Image Path"])
|
985 |
+
|
986 |
+
# Display as interactive table
|
987 |
+
st.dataframe(
|
988 |
+
history_df[["Timestamp", "Fruit Type", "Quality", "Confidence"]].style.format({"Confidence": "{:.2%}"}),
|
989 |
+
use_container_width=True
|
990 |
+
)
|
991 |
+
|
992 |
+
# Analytics on historical data
|
993 |
+
st.subheader("Analytics")
|
994 |
+
|
995 |
+
col1, col2 = st.columns(2)
|
996 |
+
|
997 |
+
with col1:
|
998 |
+
# Fruit type distribution
|
999 |
+
fruit_counts = history_df.groupby("Fruit Type").size().reset_index(name="Count")
|
1000 |
+
fig = px.pie(
|
1001 |
+
fruit_counts,
|
1002 |
+
values="Count",
|
1003 |
+
names="Fruit Type",
|
1004 |
+
title="Fruit Type Distribution",
|
1005 |
+
hole=0.4
|
1006 |
+
)
|
1007 |
+
st.plotly_chart(fig, use_container_width=True)
|
1008 |
+
|
1009 |
+
with col2:
|
1010 |
+
# Quality distribution
|
1011 |
+
quality_counts = history_df.groupby("Quality").size().reset_index(name="Count")
|
1012 |
+
fig = px.bar(
|
1013 |
+
quality_counts,
|
1014 |
+
x="Quality",
|
1015 |
+
y="Count",
|
1016 |
+
title="Quality Distribution",
|
1017 |
+
color="Quality",
|
1018 |
+
color_discrete_map={"Good": "green", "Mild": "orange", "Rotten": "red"}
|
1019 |
+
)
|
1020 |
+
st.plotly_chart(fig, use_container_width=True)
|
1021 |
+
|
1022 |
+
# Time series analysis
|
1023 |
+
st.subheader("Quality Trends Over Time")
|
1024 |
+
|
1025 |
+
# Convert timestamp to datetime
|
1026 |
+
history_df["Timestamp"] = pd.to_datetime(history_df["Timestamp"], format="%Y%m%d_%H%M%S")
|
1027 |
+
history_df["Date"] = history_df["Timestamp"].dt.date
|
1028 |
+
|
1029 |
+
# Group by date and quality
|
1030 |
+
time_quality = history_df.groupby(["Date", "Quality"]).size().reset_index(name="Count")
|
1031 |
+
|
1032 |
+
# Create line chart
|
1033 |
+
fig = px.line(
|
1034 |
+
time_quality,
|
1035 |
+
x="Date",
|
1036 |
+
y="Count",
|
1037 |
+
color="Quality",
|
1038 |
+
title="Quality Trends Over Time",
|
1039 |
+
markers=True,
|
1040 |
+
color_discrete_map={"Good": "green", "Mild": "orange", "Rotten": "red"}
|
1041 |
+
)
|
1042 |
+
st.plotly_chart(fig, use_container_width=True)
|
1043 |
+
|
1044 |
+
# Export history
|
1045 |
+
csv = history_df.to_csv(index=False)
|
1046 |
+
st.download_button(
|
1047 |
+
label="Export History as CSV",
|
1048 |
+
data=csv,
|
1049 |
+
file_name="fruit_analysis_history.csv",
|
1050 |
+
mime="text/csv"
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
# Clear history button
|
1054 |
+
if st.button("Clear History"):
|
1055 |
+
if st.checkbox("I understand this will delete all analysis history"):
|
1056 |
+
c.execute("DELETE FROM analysis_history")
|
1057 |
+
conn.commit()
|
1058 |
+
st.session_state.history = []
|
1059 |
+
st.success("History cleared successfully!")
|
1060 |
+
st.experimental_rerun()
|
1061 |
+
|
1062 |
+
# Settings
|
1063 |
+
elif selected == t("settings"):
|
1064 |
+
st.title("Application Settings")
|
1065 |
+
|
1066 |
+
# Settings sections
|
1067 |
+
st.subheader("User Interface")
|
1068 |
+
|
1069 |
+
# Dark mode toggle
|
1070 |
+
dark_mode = st.toggle("Dark Mode", value=st.session_state.dark_mode)
|
1071 |
+
if dark_mode != st.session_state.dark_mode:
|
1072 |
+
st.session_state.dark_mode = dark_mode
|
1073 |
+
st.experimental_rerun()
|
1074 |
+
|
1075 |
+
# Language selection
|
1076 |
+
language = st.selectbox(
|
1077 |
+
"Language",
|
1078 |
+
options=["English", "Spanish", "French"],
|
1079 |
+
index=["English", "Spanish", "French"].index(st.session_state.language)
|
1080 |
+
)
|
1081 |
+
if language != st.session_state.language:
|
1082 |
+
st.session_state.language = language
|
1083 |
+
st.experimental_rerun()
|
1084 |
+
|
1085 |
+
# Model settings
|
1086 |
+
st.subheader("Model Settings")
|
1087 |
+
|
1088 |
+
# Confidence threshold
|
1089 |
+
confidence_threshold = st.slider(
|
1090 |
+
"Minimum Confidence Threshold",
|
1091 |
+
min_value=0.0,
|
1092 |
+
max_value=1.0,
|
1093 |
+
value=0.5,
|
1094 |
+
step=0.05,
|
1095 |
+
format="%.2f"
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
# Enhancement toggles
|
1099 |
+
st.subheader("Image Enhancement")
|
1100 |
+
enhance_contrast = st.checkbox("Auto-enhance Contrast", value=True)
|
1101 |
+
enhance_sharpness = st.checkbox("Auto-enhance Sharpness", value=True)
|
1102 |
+
|
1103 |
+
# Advanced settings
|
1104 |
+
with st.expander("Advanced Settings"):
|
1105 |
+
st.selectbox("Model Architecture", ["InceptionV3 (Current)", "EfficientNetB3", "ResNet50", "Vision Transformer"])
|
1106 |
+
st.number_input("Batch Size", min_value=1, max_value=64, value=16)
|
1107 |
+
st.checkbox("Enable GPU Acceleration (if available)", value=True)
|
1108 |
+
|
1109 |
+
# Database management
|
1110 |
+
st.subheader("Database Management")
|
1111 |
+
if st.button("Export Database"):
|
1112 |
+
# Get all data from database
|
1113 |
+
c = conn.cursor()
|
1114 |
+
c.execute("SELECT * FROM analysis_history")
|
1115 |
+
all_data = c.fetchall()
|
1116 |
+
|
1117 |
+
# Convert to DataFrame
|
1118 |
+
all_df = pd.DataFrame(all_data, columns=["ID", "Timestamp", "Fruit Type", "Quality", "Confidence", "Image Path"])
|
1119 |
+
|
1120 |
+
# Convert to CSV
|
1121 |
+
csv = all_df.to_csv(index=False)
|
1122 |
+
|
1123 |
+
# Download button
|
1124 |
+
st.download_button(
|
1125 |
+
label="Download Database as CSV",
|
1126 |
+
data=csv,
|
1127 |
+
file_name="fruit_analysis_database.csv",
|
1128 |
+
mime="text/csv"
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
# About section
|
1132 |
+
st.subheader("About")
|
1133 |
+
st.markdown("""
|
1134 |
+
### Advanced Fruit Monitoring System
|
1135 |
+
Version 2.0
|
1136 |
+
|
1137 |
+
This application uses deep learning to analyze fruits for:
|
1138 |
+
- Fruit type identification
|
1139 |
+
- Quality assessment
|
1140 |
+
- Damage detection and segmentation
|
1141 |
+
- Nutritional information
|
1142 |
+
- Storage recommendations
|
1143 |
+
|
1144 |
+
Built with Streamlit, TensorFlow, PyTorch, and Detectron2.
|
1145 |
+
""")
|
1146 |
|
1147 |
if __name__ == "__main__":
|
1148 |
main()
|
|
|
1150 |
|
1151 |
|
1152 |
|
1153 |
+
|
1154 |
+
|
1155 |
+
|
1156 |
+
|
1157 |
# import streamlit as st
|
1158 |
# import numpy as np
|
1159 |
# import cv2
|