Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -517,7 +517,7 @@ def load_models():
|
|
517 |
|
518 |
model_name, model_quality = load_models()
|
519 |
|
520 |
-
# Setup Detectron2 configuration for watermelon and
|
521 |
@st.cache_resource
|
522 |
def load_detectron_model(model_type):
|
523 |
cfg = get_cfg()
|
@@ -526,7 +526,7 @@ def load_detectron_model(model_type):
|
|
526 |
cfg.MODEL.WEIGHTS = "Watermelon_model.pth"
|
527 |
elif model_type == "tomato":
|
528 |
cfg.merge_from_file("tomato.yaml")
|
529 |
-
cfg.MODEL.WEIGHTS = "
|
530 |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
|
531 |
cfg.MODEL.DEVICE = 'cpu' # Use CPU for inference
|
532 |
predictor = DefaultPredictor(cfg)
|
@@ -551,7 +551,7 @@ if uploaded_file is not None:
|
|
551 |
|
552 |
# Predict fruit name
|
553 |
pred_name = model_name.predict(img_array)
|
554 |
-
predicted_name = '
|
555 |
|
556 |
# Predict fruit quality
|
557 |
pred_quality = model_quality.predict(img_array)
|
@@ -577,8 +577,8 @@ if uploaded_file is not None:
|
|
577 |
# Load the image again for the mask detection (Detectron2 requires the original image)
|
578 |
im = cv2.imdecode(np.fromstring(uploaded_file.read(), np.uint8), 1)
|
579 |
|
580 |
-
# Check if the predicted fruit is
|
581 |
-
if predicted_name == "
|
582 |
predictor, cfg = load_detectron_model("tomato")
|
583 |
elif predicted_name == "Watermelon":
|
584 |
predictor, cfg = load_detectron_model("watermelon")
|
@@ -596,3 +596,4 @@ if uploaded_file is not None:
|
|
596 |
except Exception as e:
|
597 |
st.error(f"An error occurred during processing: {str(e)}")
|
598 |
|
|
|
|
517 |
|
518 |
model_name, model_quality = load_models()
|
519 |
|
520 |
+
# Setup Detectron2 configuration for watermelon and tomato
|
521 |
@st.cache_resource
|
522 |
def load_detectron_model(model_type):
|
523 |
cfg = get_cfg()
|
|
|
526 |
cfg.MODEL.WEIGHTS = "Watermelon_model.pth"
|
527 |
elif model_type == "tomato":
|
528 |
cfg.merge_from_file("tomato.yaml")
|
529 |
+
cfg.MODEL.WEIGHTS = "Tomato_model.pth"
|
530 |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
|
531 |
cfg.MODEL.DEVICE = 'cpu' # Use CPU for inference
|
532 |
predictor = DefaultPredictor(cfg)
|
|
|
551 |
|
552 |
# Predict fruit name
|
553 |
pred_name = model_name.predict(img_array)
|
554 |
+
predicted_name = 'Tomato' # Example: Modify based on the actual model's output
|
555 |
|
556 |
# Predict fruit quality
|
557 |
pred_quality = model_quality.predict(img_array)
|
|
|
577 |
# Load the image again for the mask detection (Detectron2 requires the original image)
|
578 |
im = cv2.imdecode(np.fromstring(uploaded_file.read(), np.uint8), 1)
|
579 |
|
580 |
+
# Check if the predicted fruit is Tomato or Watermelon and load the correct model
|
581 |
+
if predicted_name == "Tomato":
|
582 |
predictor, cfg = load_detectron_model("tomato")
|
583 |
elif predicted_name == "Watermelon":
|
584 |
predictor, cfg = load_detectron_model("watermelon")
|
|
|
596 |
except Exception as e:
|
597 |
st.error(f"An error occurred during processing: {str(e)}")
|
598 |
|
599 |
+
|