Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
#
|
7 |
-
|
|
|
8 |
|
9 |
-
# Display the input value
|
10 |
-
if user_input:
|
11 |
-
st.write(f"Hello, {user_input}!")
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
|
3 |
+
# # Set title of the app
|
4 |
+
# st.title("Simple Streamlit App")
|
5 |
+
|
6 |
+
# # Add text input
|
7 |
+
# user_input = st.text_input("Enter your name:")
|
8 |
+
|
9 |
+
# # Display the input value
|
10 |
+
# if user_input:
|
11 |
+
# st.write(f"Hello, {user_input}!")
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
import streamlit as st
|
20 |
+
from tensorflow.keras.models import load_model
|
21 |
+
from tensorflow.keras.preprocessing import image
|
22 |
+
import numpy as np
|
23 |
+
from PIL import Image
|
24 |
+
|
25 |
+
# Load the pre-trained models
|
26 |
+
@st.cache_resource
|
27 |
+
def load_models():
|
28 |
+
model1 = load_model('name_model_inception.h5') # Update with your Hugging Face model path
|
29 |
+
model2 = load_model('type_model_inception.h5') # Update with your Hugging Face model path
|
30 |
+
return model1, model2
|
31 |
+
|
32 |
+
model1, model2 = load_models()
|
33 |
+
|
34 |
+
# Label mappings
|
35 |
+
label_map1 = {
|
36 |
+
0: "Banana", 1: "Cucumber", 2: "Grape", 3: "Kaki", 4: "Papaya",
|
37 |
+
5: "Peach", 6: "Pear", 7: "Pepper", 8: "Strawberry", 9: "Watermelon", 10: "Tomato"
|
38 |
+
}
|
39 |
+
|
40 |
+
label_map2 = {
|
41 |
+
0: "Good", 1: "Mild", 2: "Rotten"
|
42 |
+
}
|
43 |
+
|
44 |
+
# Streamlit app layout
|
45 |
+
st.title("Fruit Classifier")
|
46 |
+
|
47 |
+
# Upload image
|
48 |
+
uploaded_file = st.file_uploader("Choose an image of a fruit", type=["jpg", "jpeg", "png"])
|
49 |
+
|
50 |
+
if uploaded_file is not None:
|
51 |
+
# Display the uploaded image
|
52 |
+
img = Image.open(uploaded_file)
|
53 |
+
st.image(img, caption="Uploaded Image", use_column_width=True)
|
54 |
+
|
55 |
+
# Preprocess the image
|
56 |
+
img = img.resize((224, 224)) # Resize image to match the model input
|
57 |
+
img_array = image.img_to_array(img)
|
58 |
+
img_array = np.expand_dims(img_array, axis=0)
|
59 |
+
img_array = img_array / 255.0 # Normalize the image
|
60 |
+
|
61 |
+
# Make predictions
|
62 |
+
pred1 = model1.predict(img_array)
|
63 |
+
pred2 = model2.predict(img_array)
|
64 |
|
65 |
+
predicted_class1 = np.argmax(pred1, axis=1)
|
66 |
+
predicted_class2 = np.argmax(pred2, axis=1)
|
67 |
|
68 |
+
# Display results
|
69 |
+
st.write(f"**Type Detection**: {label_map1[predicted_class1[0]]}")
|
70 |
+
st.write(f"**Condition Detection**: {label_map2[predicted_class2[0]]}")
|
71 |
|
|
|
|
|
|