Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,155 +1,42 @@
|
|
| 1 |
-
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
|
| 11 |
-
|
| 12 |
-
sns.set_theme()
|
| 13 |
-
|
| 14 |
-
www_dir = Path(__file__).parent.resolve() / "www"
|
| 15 |
-
|
| 16 |
-
df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
|
| 17 |
-
numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
|
| 18 |
-
species: List[str] = df["Species"].unique().tolist()
|
| 19 |
-
species.sort()
|
| 20 |
-
|
| 21 |
-
app_ui = x.ui.page_fillable(
|
| 22 |
-
shinyswatch.theme.minty(),
|
| 23 |
-
ui.layout_sidebar(
|
| 24 |
-
ui.panel_sidebar(
|
| 25 |
-
# Artwork by @allison_horst
|
| 26 |
-
ui.input_selectize(
|
| 27 |
-
"xvar",
|
| 28 |
-
"X variable",
|
| 29 |
-
numeric_cols,
|
| 30 |
-
selected="Bill Length (mm)",
|
| 31 |
-
),
|
| 32 |
-
ui.input_selectize(
|
| 33 |
-
"yvar",
|
| 34 |
-
"Y variable",
|
| 35 |
-
numeric_cols,
|
| 36 |
-
selected="Bill Depth (mm)",
|
| 37 |
-
),
|
| 38 |
-
ui.input_checkbox_group(
|
| 39 |
-
"species", "Filter by species", species, selected=species
|
| 40 |
-
),
|
| 41 |
-
ui.hr(),
|
| 42 |
-
ui.input_switch("by_species", "Show species", value=True),
|
| 43 |
-
ui.input_switch("show_margins", "Show marginal plots", value=True),
|
| 44 |
-
width=2,
|
| 45 |
-
),
|
| 46 |
-
ui.panel_main(
|
| 47 |
-
ui.output_ui("value_boxes"),
|
| 48 |
-
x.ui.output_plot("scatter", fill=True),
|
| 49 |
-
ui.help_text(
|
| 50 |
-
"Artwork by ",
|
| 51 |
-
ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
|
| 52 |
-
class_="text-end",
|
| 53 |
-
),
|
| 54 |
-
),
|
| 55 |
-
),
|
| 56 |
)
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
# This calculation "req"uires that at least one species is selected
|
| 65 |
-
req(len(input.species()) > 0)
|
| 66 |
-
|
| 67 |
-
# Filter the rows so we only include the desired species
|
| 68 |
-
return df[df["Species"].isin(input.species())]
|
| 69 |
-
|
| 70 |
-
@output
|
| 71 |
-
@render.plot
|
| 72 |
-
def scatter():
|
| 73 |
-
"""Generates a plot for Shiny to display to the user"""
|
| 74 |
-
|
| 75 |
-
# The plotting function to use depends on whether margins are desired
|
| 76 |
-
plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
|
| 77 |
-
|
| 78 |
-
plotfunc(
|
| 79 |
-
data=filtered_df(),
|
| 80 |
-
x=input.xvar(),
|
| 81 |
-
y=input.yvar(),
|
| 82 |
-
palette=palette,
|
| 83 |
-
hue="Species" if input.by_species() else None,
|
| 84 |
-
hue_order=species,
|
| 85 |
-
legend=False,
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
@output
|
| 89 |
-
@render.ui
|
| 90 |
-
def value_boxes():
|
| 91 |
-
df = filtered_df()
|
| 92 |
-
|
| 93 |
-
def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
|
| 94 |
-
return x.ui.value_box(
|
| 95 |
-
title,
|
| 96 |
-
count,
|
| 97 |
-
{"class_": "pt-1 pb-0"},
|
| 98 |
-
showcase=x.ui.as_fill_item(
|
| 99 |
-
ui.tags.img(
|
| 100 |
-
{"style": "object-fit:contain;"},
|
| 101 |
-
src=showcase_img,
|
| 102 |
-
)
|
| 103 |
-
),
|
| 104 |
-
theme_color=None,
|
| 105 |
-
style=f"background-color: {bgcol};",
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
if not input.by_species():
|
| 109 |
-
return penguin_value_box(
|
| 110 |
-
"Penguins",
|
| 111 |
-
len(df.index),
|
| 112 |
-
bg_palette["default"],
|
| 113 |
-
# Artwork by @allison_horst
|
| 114 |
-
showcase_img="penguins.png",
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
value_boxes = [
|
| 118 |
-
penguin_value_box(
|
| 119 |
-
name,
|
| 120 |
-
len(df[df["Species"] == name]),
|
| 121 |
-
bg_palette[name],
|
| 122 |
-
# Artwork by @allison_horst
|
| 123 |
-
showcase_img=f"{name}.png",
|
| 124 |
-
)
|
| 125 |
-
for name in species
|
| 126 |
-
# Only include boxes for _selected_ species
|
| 127 |
-
if name in input.species()
|
| 128 |
-
]
|
| 129 |
-
|
| 130 |
-
return x.ui.layout_column_wrap(1 / len(value_boxes), *value_boxes)
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
# "darkorange", "purple", "cyan4"
|
| 134 |
-
colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
|
| 135 |
-
colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
|
| 136 |
-
|
| 137 |
-
palette: Dict[str, Tuple[float, float, float]] = {
|
| 138 |
-
"Adelie": colors[0],
|
| 139 |
-
"Chinstrap": colors[1],
|
| 140 |
-
"Gentoo": colors[2],
|
| 141 |
-
"default": sns.color_palette()[0], # type: ignore
|
| 142 |
}
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import necessary libraries
|
| 2 |
+
from flaml import autogen
|
| 3 |
+
|
| 4 |
+
# Set up configurations
|
| 5 |
+
config_list = autogen.config_list_from_json(
|
| 6 |
+
"OAI_CONFIG_LIST",
|
| 7 |
+
filter_dict={
|
| 8 |
+
"model": ["gpt4", "gpt-4-32k", "gpt-4-32k-0314", "gpt-4-32k-v0314"],
|
| 9 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
)
|
| 11 |
|
| 12 |
+
llm_config = {
|
| 13 |
+
"request_timeout": 600,
|
| 14 |
+
"seed": 42,
|
| 15 |
+
"config_list": config_list,
|
| 16 |
+
"temperature": 0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
}
|
| 18 |
|
| 19 |
+
# Construct agents
|
| 20 |
+
assistant = autogen.AssistantAgent(
|
| 21 |
+
name="assistant",
|
| 22 |
+
llm_config=llm_config,
|
| 23 |
+
)
|
|
|
|
| 24 |
|
| 25 |
+
user_proxy = autogen.UserProxyAgent(
|
| 26 |
+
name="user_proxy",
|
| 27 |
+
human_input_mode="TERMINATE",
|
| 28 |
+
max_consecutive_auto_reply=10,
|
| 29 |
+
is_termination_msg=lambda x: x.get("content", "").rstrip().endswith("TERMINATE"),
|
| 30 |
+
code_execution_config={"work_dir": "web"},
|
| 31 |
+
llm_config=llm_config,
|
| 32 |
+
system_message="""Reply TERMINATE if the task has been solved at full satisfaction.
|
| 33 |
+
Otherwise, reply CONTINUE, or the reason why the task is not solved yet."""
|
| 34 |
)
|
| 35 |
+
|
| 36 |
+
# Start a conversation
|
| 37 |
+
user_proxy.initiate_chat(
|
| 38 |
+
assistant,
|
| 39 |
+
message="""
|
| 40 |
+
Tell me about this project, and the libary, then also tell me what I can use it for: https://www.gradio.app/guides/quickstart
|
| 41 |
+
""",
|
| 42 |
+
)
|