File size: 23,053 Bytes
09daffd
 
 
 
 
 
 
 
 
 
 
d452590
09daffd
a2a0a3e
09daffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56bdddd
09daffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a0a3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09daffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import gradio as gr
from utils.meldrx import MeldRxAPI
import json
import os
import tempfile
from datetime import datetime
import traceback
import logging
from huggingface_hub import InferenceClient  # Import InferenceClient
from urllib.parse import urlparse, parse_qs  # Import URL parsing utilities
from utils.callbackmanager import CallbackManager
from utils.meldrx import MeldRxAPI
from prompts import system_instructions
from old.extractcode import extract_code_from_url , 
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Import PDF utilities
from pdfutils import PDFGenerator, generate_discharge_summary

# Import necessary libraries for new file types and AI analysis functions
import pydicom  # For DICOM
import hl7  # For HL7
from xml.etree import ElementTree  # For XML and CCDA
from pypdf import PdfReader  # For PDF
import csv  # For CSV
import io  # For IO operations
from PIL import Image  # For image handling

from utils.generators import  generate_pdf_from_meldrx, generate_ai_discharge_content, generate_pdf_from_meldrx_with_ai_content, extract_section,  generate_pdf_from_form, generate_discharge_summary, generate_ai_discharge_content, analyze_dicom_file_with_ai, analyze_hl7_file_with_ai, analyze_cda_xml_file_with_ai, analyze_pdf_file_with_ai, analyze_csv_file_with_ai, generate_pdf_from_form , generate_ai_discharge_content , extract_section , generate_pdf_from_meldrx_with_ai_content 


# Initialize Inference Client - Ensure YOUR_HF_TOKEN is set in environment variables or replace with your actual token
HF_TOKEN = os.getenv("HF_TOKEN")  # Or replace with your actual token string
if not HF_TOKEN:
    raise ValueError(
        "HF_TOKEN environment variable not set. Please set your Hugging Face API token."
    )
client = InferenceClient(api_key=HF_TOKEN)
model_name = "meta-llama/Llama-3.3-70B-Instruct"  # Specify the model to use


def display_form(first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code, doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address, doctor_city, doctor_state, doctor_zip, admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death, diagnosis, procedures, medications, preparer_name, preparer_job_title,):
    form = f"""
    <div style='color:#00FFFF; font-family: monospace;'>
    **Patient Discharge Form** <br>
    - Name: {first_name} {middle_initial} {last_name} <br>
    - Date of Birth: {dob}, Age: {age}, Sex: {sex} <br>
    - Address: {address}, {city}, {state}, {zip_code} <br>
    - Doctor: {doctor_first_name} {doctor_middle_initial} {doctor_last_name} <br>
    - Hospital/Clinic: {hospital_name} <br>
    - Doctor Address: {doctor_address}, {doctor_city}, {doctor_state}, {doctor_zip} <br>
    - Admission Date: {admission_date}, Source: {referral_source}, Method: {admission_method} <br>
    - Discharge Date: {discharge_date}, Reason: {discharge_reason} <br>
    - Date of Death: {date_of_death} <br>
    - Diagnosis: {diagnosis} <br>
    - Procedures: {procedures} <br>
    - Medications: {medications} <br>
    - Prepared By: {preparer_name}, {preparer_job_title}
    </div>
    """
    return form



CALLBACK_MANAGER = CallbackManager(
    redirect_uri="https://multitransformer-discharge-guard.hf.space/callback",
    client_secret=None,
)


class CallbackManager:
    def __init__(self, redirect_uri: str, client_secret: str = None):
        client_id = os.getenv("APPID")
        if not client_id:
            raise ValueError("APPID environment variable not set.")
        workspace_id = os.getenv("WORKSPACE_URL")
        if not workspace_id:
            raise ValueError("WORKSPACE_URL environment variable not set.")
        self.api = MeldRxAPI(client_id, client_secret, workspace_id, redirect_uri)
        self.auth_code = None
        self.access_token = None

    def handle_callback(self, callback_url: str) -> str:
        """Handles the callback URL and extracts the code automatically."""
        self.auth_code = extract_code_from_url(callback_url)
        if not self.auth_code:
            return "No authentication code found in URL."

        if self.api.authenticate_with_code(self.auth_code):
            self.access_token = self.api.access_token
            return f"Authentication successful! Access Token: {self.access_token[:10]}... (truncated)"
        return "Authentication failed. Please check the authorization code."
    
def generate_discharge_paper_one_click():
    """One-click function to fetch patient data and generate discharge paper with AI Content."""
    patient_data_str = CALLBACK_MANAGER.get_patient_data()
    if (
        patient_data_str.startswith("Not authenticated")
        or patient_data_str.startswith("Failed")
        or patient_data_str.startswith("Error")
    ):
        return None, patient_data_str  # Return error message if authentication or data fetch fails

    try:
        patient_data = json.loads(patient_data_str)

        # --- AI Content Generation for Discharge Summary ---
        # This is a placeholder - Replace with actual AI call using InferenceClient and patient_data to generate content
        ai_generated_content = generate_ai_discharge_content(
            patient_data
        )  # Placeholder AI function

        if not ai_generated_content:
            return None, "Error: AI content generation failed."

        # --- PDF Generation with AI Content ---
        pdf_path, status_message = generate_pdf_from_meldrx_with_ai_content(
            patient_data, ai_generated_content
        )  # Function to generate PDF with AI content

        if pdf_path:
            return pdf_path, status_message
        else:
            return None, status_message  # Return status message if PDF generation fails

    except json.JSONDecodeError:
        return None, "Error: Patient data is not in valid JSON format."
    except Exception as e:
        return None, f"Error during discharge paper generation: {str(e)}"



# Define the cyberpunk theme - using a dark base and neon accents
cyberpunk_theme = gr.themes.Monochrome(
    primary_hue="cyan",
    secondary_hue="pink",
    neutral_hue="slate",
    font=["Source Code Pro", "monospace"], # Retro monospace font
    font_mono=["Source Code Pro", "monospace"]
)

# Create the UI with the cyberpunk theme
with gr.Blocks(theme=cyberpunk_theme) as demo: # Apply the theme here
    gr.Markdown("<h1 style='color:#00FFFF; text-shadow: 0 0 5px #00FFFF;'>Discharge Guard <span style='color:#FF00FF; text-shadow: 0 0 5px #FF00FF;'>Cyber</span></h1>") # Cyberpunk Title

    with gr.Tab("Authenticate with MeldRx", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
        gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>SMART on FHIR Authentication</h2>") # Neon Tab Header
        auth_url_output = gr.Textbox(label="Authorization URL", value=CALLBACK_MANAGER.get_auth_url(), interactive=False)
        gr.Markdown("<p style='color:#A9A9A9;'>Copy the URL above, open it in a browser, log in, and paste the <span style='color:#00FFFF;'>entire redirected URL</span> from your browser's address bar below.</p>") # Subdued instructions with neon highlight
        redirected_url_input = gr.Textbox(label="Redirected URL") # New textbox for redirected URL
        extract_code_button = gr.Button("Extract Authorization Code", elem_classes="cyberpunk-button") # Cyberpunk button style
        extracted_code_output = gr.Textbox(label="Extracted Authorization Code", interactive=False) # Textbox to show extracted code

        auth_code_input = gr.Textbox(label="Authorization Code (from above, or paste manually if extraction fails)", interactive=True) # Updated label to be clearer
        auth_submit = gr.Button("Submit Code for Authentication", elem_classes="cyberpunk-button") # Cyberpunk button style
        auth_result = gr.HTML(label="Authentication Result") # Use HTML for styled result

        patient_data_button = gr.Button("Fetch Patient Data", elem_classes="cyberpunk-button") # Cyberpunk button style
        patient_data_output = gr.Textbox(label="Patient Data", lines=10)

        # Add button to generate PDF from MeldRx data (No AI)
        meldrx_pdf_button = gr.Button("Generate PDF from MeldRx Data (No AI)", elem_classes="cyberpunk-button") # Renamed button
        meldrx_pdf_status = gr.Textbox(label="PDF Generation Status (No AI)") # Renamed status
        meldrx_pdf_download = gr.File(label="Download Generated PDF (No AI)") # Renamed download

        def process_redirected_url(redirected_url):
            """Processes the redirected URL to extract and display the authorization code."""
            auth_code, error_message = extract_auth_code_from_url(redirected_url)
            if auth_code:
                return auth_code, "<span style='color:#00FF7F;'>Authorization code extracted!</span>" # Neon Green Success
            else:
                return "", f"<span style='color:#FF4500;'>Could not extract authorization code.</span> {error_message or ''}" # Neon Orange Error


        extract_code_button.click(
            fn=process_redirected_url,
            inputs=redirected_url_input,
            outputs=[extracted_code_output, auth_result],# Reusing auth_result for extraction status
        )

        auth_submit.click(
            fn=CALLBACK_MANAGER.set_auth_code,
            inputs=extracted_code_output,  # Using extracted code as input for authentication
            outputs=auth_result,
        )

    with gr.Tab("Patient Dashboard", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
        gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Patient Data</h2>") # Neon Tab Header
        dashboard_output = gr.HTML("<p style='color:#A9A9A9;'>Fetch patient data from the Authentication tab first.</p>") # Subdued placeholder text

        refresh_btn = gr.Button("Refresh Data", elem_classes="cyberpunk-button") # Cyberpunk button style

        # Simple function to update dashboard based on fetched data
        def update_dashboard():
            try:
                data = CALLBACK_MANAGER.get_patient_data()
                if (
                    data.startswith("<span style='color:#FF8C00;'>Not authenticated")
                    or data.startswith("<span style='color:#DC143C;'>Failed")
                    or data.startswith("<span style='color:#FF6347;'>Error")
                ):
                    return f"<p style='color:#FF8C00;'>{data}</p>" # Show auth errors in orange

                try:
                    # Parse the data
                    patients_data = json.loads(data)
                    patients = []

                    # Extract patients from bundle
                    for entry in patients_data.get("entry", []):
                        resource = entry.get("resource", {})
                        if resource.get("resourceType") == "Patient":
                            patients.append(resource)

                    # Generate HTML card
                    html = "<h3 style='color:#00FFFF; text-shadow: 0 0 2px #00FFFF;'>Patients</h3>" # Neon Sub-header
                    for patient in patients:
                        # Extract name
                        name = patient.get("name", [{}])[0]
                        given = " ".join(name.get("given", ["Unknown"]))
                        family = name.get("family", "Unknown")

                        # Extract other details
                        gender = patient.get("gender", "unknown").capitalize()
                        birth_date = patient.get("birthDate", "Unknown")

                        # Generate HTML card with cyberpunk styling
                        html += f"""
                        <div style="border: 1px solid #00FFFF; padding: 10px; margin: 10px 0; border-radius: 5px; background-color: #222; box-shadow: 0 0 5px #00FFFF;">
                            <h4 style='color:#00FFFF;'>{given} {family}</h4>
                            <p style='color:#A9A9A9;'><strong>Gender:</strong> <span style='color:#00FFFF;'>{gender}</span></p>
                            <p style='color:#A9A9A9;'><strong>Birth Date:</strong> <span style='color:#00FFFF;'>{birth_date}</span></p>
                            <p style='color:#A9A9A9;'><strong>ID:</strong> <span style='color:#00FFFF;'>{patient.get("id", "Unknown")}</span></p>
                        </div>
                        """

                    return html
                except Exception as e:
                    return f"<p style='color:#FF6347;'>Error parsing patient data: {str(e)}</p>" # Tomato Error
            except Exception as e:
                return f"<p style='color:#FF6347;'>Error fetching patient data: {str(e)}</p>" # Tomato Error


    with gr.Tab("Discharge Form", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
        gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Patient Details</h2>") # Neon Tab Header
        with gr.Row():
            first_name = gr.Textbox(label="First Name")
            last_name = gr.Textbox(label="Last Name")
            middle_initial = gr.Textbox(label="Middle Initial")
        with gr.Row():
            dob = gr.Textbox(label="Date of Birth")
            age = gr.Textbox(label="Age")
            sex = gr.Textbox(label="Sex")
        address = gr.Textbox(label="Address")
        with gr.Row():
            city = gr.Textbox(label="City")
            state = gr.Textbox(label="State")
            zip_code = gr.Textbox(label="Zip Code")
        gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Primary Healthcare Professional Details</h2>") # Neon Sub-header
        with gr.Row():
            doctor_first_name = gr.Textbox(label="Doctor's First Name")
            doctor_last_name = gr.Textbox(label="Doctor's Last Name")
            doctor_middle_initial = gr.Textbox(label="Doctor's Middle Initial")
        hospital_name = gr.Textbox(label="Hospital/Clinic Name")
        doctor_address = gr.Textbox(label="Address")
        with gr.Row():
            doctor_city = gr.Textbox(label="City")
            doctor_state = gr.Textbox(label="State")
            doctor_zip = gr.Textbox(label="Zip Code")
        gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Admission and Discharge Details</h2>") # Neon Sub-header
        with gr.Row():
            admission_date = gr.Textbox(label="Date of Admission")
            referral_source = gr.Textbox(label="Source of Referral")
        admission_method = gr.Textbox(label="Method of Admission")
        with gr.Row():
            discharge_date = gr.Textbox(label="Date of Discharge")
            discharge_reason = gr.Radio(
                ["Treated", "Transferred", "Discharge Against Advice", "Patient Died"],
                label="Discharge Reason",
            )
        date_of_death = gr.Textbox(label="Date of Death (if applicable)")
        gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Diagnosis & Procedures</h2>") # Neon Sub-header
        diagnosis = gr.Textbox(label="Diagnosis")
        procedures = gr.Textbox(label="Operation & Procedures")
        gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Medication Details</h2>") # Neon Sub-header
        medications = gr.Textbox(label="Medication on Discharge")
        gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Prepared By</h2>") # Neon Sub-header
        with gr.Row():
            preparer_name = gr.Textbox(label="Name")
            preparer_job_title = gr.Textbox(label="Job Title")

        # Add buttons for both display form and generate PDF
        with gr.Row():
            submit_display = gr.Button("Display Form", elem_classes="cyberpunk-button") # Cyberpunk button style
            submit_pdf = gr.Button("Generate PDF (No AI)", elem_classes="cyberpunk-button") # Renamed button to clarify no AI and styled

        # Output areas
        form_output = gr.HTML() # Use HTML to render styled form
        pdf_output = gr.File(label="Download PDF (No AI)")  # Renamed output to clarify no AI

        # Connect the display form button
        submit_display.click(
            display_form,
            inputs=[ first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code, doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address, doctor_city, doctor_state, doctor_zip, admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death, diagnosis, procedures, medications, preparer_name, preparer_job_title,],
            outputs=form_output
        )

        # Connect the generate PDF button (No AI version)
        submit_pdf.click(
            generate_pdf_from_form,
            inputs=[ first_name, last_name, middle_initial, dob, age, sex, address, city, state, zip_code, doctor_first_name, doctor_last_name, doctor_middle_initial, hospital_name, doctor_address, doctor_city, doctor_state, doctor_zip, admission_date, referral_source, admission_method, discharge_date, discharge_reason, date_of_death, diagnosis, procedures, medications, preparer_name, preparer_job_title,],
            outputs=pdf_output
        )

    with gr.Tab("Medical File Analysis", elem_classes="cyberpunk-tab"): # Optional: Class for tab styling
        gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>Analyze Medical Files with Discharge Guard AI</h2>") # Neon Tab Header
        with gr.Column():
            dicom_file = gr.File(
                file_types=[".dcm"], label="Upload DICOM File (.dcm)"
            )
            dicom_ai_output = gr.Textbox(label="DICOM Analysis Report", lines=5)
            analyze_dicom_button = gr.Button("Analyze DICOM with AI", elem_classes="cyberpunk-button") # Cyberpunk button style

            hl7_file = gr.File(
                file_types=[".hl7"], label="Upload HL7 File (.hl7)"
            )
            hl7_ai_output = gr.Textbox(label="HL7 Analysis Report", lines=5)
            analyze_hl7_button = gr.Button("Analyze HL7 with AI", elem_classes="cyberpunk-button") # Cyberpunk button style

            xml_file = gr.File(
                file_types=[".xml"], label="Upload XML File (.xml)"
            )
            xml_ai_output = gr.Textbox(label="XML Analysis Report", lines=5)
            analyze_xml_button = gr.Button("Analyze XML with AI", elem_classes="cyberpunk-button") # Cyberpunk button style

            ccda_file = gr.File(
                file_types=[".xml", ".cda", ".ccd"], label="Upload CCDA File (.xml, .cda, .ccd)"
            )
            ccda_ai_output = gr.Textbox(label="CCDA Analysis Report", lines=5)
            analyze_ccda_button = gr.Button("Analyze CCDA with AI", elem_classes="cyberpunk-button") # Cyberpunk button style

            ccd_file = gr.File(
                file_types=[".ccd"],
                label="Upload CCD File (.ccd)",
            )  # Redundant, as CCDA also handles .ccd, but kept for clarity
            ccd_ai_output = gr.Textbox(
                label="CCD Analysis Report", lines=5
            )  # Redundant
            analyze_ccd_button = gr.Button("Analyze CCD with AI", elem_classes="cyberpunk-button") # Cyberpunk button style # Redundant
            pdf_file = gr.File(
                file_types=[".pdf"], label="Upload PDF File (.pdf)"
            )
            pdf_ai_output = gr.Textbox(label="PDF Analysis Report", lines=5)
            analyze_pdf_button = gr.Button("Analyze PDF with AI", elem_classes="cyberpunk-button") # Cyberpunk button style

            csv_file = gr.File(
                file_types=[".csv"], label="Upload CSV File (.csv)"
            )
            csv_ai_output = gr.Textbox(label="CSV Analysis Report", lines=5)
            analyze_csv_button = gr.Button("Analyze CSV with AI", elem_classes="cyberpunk-button") # Cyberpunk button style

        # Connect AI Analysis Buttons - using REAL AI functions now
        analyze_dicom_button.click(
            analyze_dicom_file_with_ai,  # Call REAL AI function
            inputs=dicom_file,
            outputs=dicom_ai_output
        )
        analyze_hl7_button.click(
            analyze_hl7_file_with_ai,  # Call REAL AI function
            inputs=hl7_file,
            outputs=hl7_ai_output
        )
        analyze_xml_button.click(
            analyze_cda_xml_file_with_ai,  # Call REAL AI function
            inputs=xml_file,
            outputs=xml_ai_output
        )
        analyze_ccda_button.click(
            analyze_cda_xml_file_with_ai,  # Call REAL AI function
            inputs=ccda_file,
            outputs=ccda_ai_output
        )
        analyze_ccd_button.click(  # Redundant button, but kept for UI if needed
            analyze_cda_xml_file_with_ai,  # Call REAL AI function
            inputs=ccd_file,
            outputs=ccd_ai_output
        )
        analyze_pdf_button.click(
            analyze_pdf_file_with_ai, inputs=pdf_file, outputs=pdf_ai_output
        )
        analyze_csv_button.click(
            analyze_csv_file_with_ai, inputs=csv_file, outputs=csv_ai_output
        )

    with gr.Tab(
        "One-Click Discharge Paper (AI)", elem_classes="cyberpunk-tab"
    ):  # New Tab for One-Click Discharge Paper with AI, styled
        gr.Markdown("<h2 style='color:#00FFFF; text-shadow: 0 0 3px #00FFFF;'>One-Click Medical Discharge Paper Generation with AI Content</h2>") # Neon Tab Header
        one_click_ai_pdf_button = gr.Button(
            "Generate Discharge Paper with AI (One-Click)", elem_classes="cyberpunk-button"
        )  # Updated button label and styled
        one_click_ai_pdf_status = gr.Textbox(
            label="Discharge Paper Generation Status (AI)"
        )  # Updated status label
        one_click_ai_pdf_download = gr.File(
            label="Download Discharge Paper (AI)"
        )  # Updated download label

        one_click_ai_pdf_button.click(
            generate_discharge_paper_one_click,  # Use the one-click function that now calls AI
            inputs=[],
            outputs=[one_click_ai_pdf_download, one_click_ai_pdf_status],
        )

    # Connect the patient data buttons
    patient_data_button.click(
        fn=CALLBACK_MANAGER.get_patient_data,
        inputs=None,
        outputs=patient_data_output
    )

    # Connect refresh button to update dashboard
    refresh_btn.click(
        fn=update_dashboard, inputs=None, outputs=dashboard_output
    )

    # Corrected the button click function name here to `generate_pdf_from_meldrx` (No AI PDF)
    meldrx_pdf_button.click(
        fn=generate_pdf_from_meldrx,
        inputs=patient_data_output,
        outputs=[meldrx_pdf_download, meldrx_pdf_status]
    )

    # Connect patient data updates to dashboard
    patient_data_button.click(
        fn=update_dashboard, inputs=None, outputs=dashboard_output
    )

# Launch with sharing enabled for public access
demo.launch(ssr_mode=False)