Update predictive_model and requirements
Browse files- predictive_model.py +83 -1
 - requirements.txt +2 -1
 
    	
        predictive_model.py
    CHANGED
    
    | 
         @@ -66,4 +66,86 @@ def predict_readmission_risk(model, patient_data: dict) -> float: 
     | 
|
| 66 | 
         
             
                    # If it's a classifier with predict_proba
         
     | 
| 67 | 
         
             
                    prob = model.predict_proba(X)[0,1]
         
     | 
| 68 | 
         
             
                    return float(prob)
         
     | 
| 69 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 66 | 
         
             
                    # If it's a classifier with predict_proba
         
     | 
| 67 | 
         
             
                    prob = model.predict_proba(X)[0,1]
         
     | 
| 68 | 
         
             
                    return float(prob)
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
            # Add this main function
         
     | 
| 71 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 72 | 
         
            +
                # Set up logging
         
     | 
| 73 | 
         
            +
                logging.basicConfig(level=logging.INFO, 
         
     | 
| 74 | 
         
            +
                                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
         
     | 
| 75 | 
         
            +
                
         
     | 
| 76 | 
         
            +
                print("==== Discharge Guard Readmission Risk Prediction Demo ====")
         
     | 
| 77 | 
         
            +
                
         
     | 
| 78 | 
         
            +
                # Create test patient data
         
     | 
| 79 | 
         
            +
                test_patients = [
         
     | 
| 80 | 
         
            +
                    {
         
     | 
| 81 | 
         
            +
                        "id": "P001",
         
     | 
| 82 | 
         
            +
                        "name": "John Doe",
         
     | 
| 83 | 
         
            +
                        "age": 45,
         
     | 
| 84 | 
         
            +
                        "num_conditions": 1,
         
     | 
| 85 | 
         
            +
                        "num_medications": 2
         
     | 
| 86 | 
         
            +
                    },
         
     | 
| 87 | 
         
            +
                    {
         
     | 
| 88 | 
         
            +
                        "id": "P002",
         
     | 
| 89 | 
         
            +
                        "name": "Jane Smith",
         
     | 
| 90 | 
         
            +
                        "age": 72,
         
     | 
| 91 | 
         
            +
                        "num_conditions": 4,
         
     | 
| 92 | 
         
            +
                        "num_medications": 7
         
     | 
| 93 | 
         
            +
                    },
         
     | 
| 94 | 
         
            +
                    {
         
     | 
| 95 | 
         
            +
                        "id": "P003",
         
     | 
| 96 | 
         
            +
                        "name": "Bob Johnson",
         
     | 
| 97 | 
         
            +
                        "age": 65,
         
     | 
| 98 | 
         
            +
                        "num_conditions": 3,
         
     | 
| 99 | 
         
            +
                        "num_medications": 5
         
     | 
| 100 | 
         
            +
                    }
         
     | 
| 101 | 
         
            +
                ]
         
     | 
| 102 | 
         
            +
                
         
     | 
| 103 | 
         
            +
                # Create an instance of the SimpleReadmissionModel
         
     | 
| 104 | 
         
            +
                print("\n1. Testing SimpleReadmissionModel:")
         
     | 
| 105 | 
         
            +
                simple_model = SimpleReadmissionModel()
         
     | 
| 106 | 
         
            +
                
         
     | 
| 107 | 
         
            +
                # Test with each patient
         
     | 
| 108 | 
         
            +
                for patient in test_patients:
         
     | 
| 109 | 
         
            +
                    risk_score = simple_model.predict(patient)
         
     | 
| 110 | 
         
            +
                    risk_percent = risk_score * 100
         
     | 
| 111 | 
         
            +
                    print(f"  Patient {patient['id']} ({patient['name']}): Risk Score = {risk_percent:.1f}%")
         
     | 
| 112 | 
         
            +
                
         
     | 
| 113 | 
         
            +
                # Try to create and save a sample model for demonstration
         
     | 
| 114 | 
         
            +
                try:
         
     | 
| 115 | 
         
            +
                    from sklearn.ensemble import RandomForestClassifier
         
     | 
| 116 | 
         
            +
                    from sklearn.datasets import make_classification
         
     | 
| 117 | 
         
            +
                    
         
     | 
| 118 | 
         
            +
                    print("\n2. Creating sample RandomForest model for demonstration:")
         
     | 
| 119 | 
         
            +
                    # Generate synthetic data
         
     | 
| 120 | 
         
            +
                    X, y = make_classification(n_samples=1000, n_features=3, 
         
     | 
| 121 | 
         
            +
                                              n_informative=3, n_redundant=0, 
         
     | 
| 122 | 
         
            +
                                              random_state=42)
         
     | 
| 123 | 
         
            +
                    
         
     | 
| 124 | 
         
            +
                    # Create and fit a simple model
         
     | 
| 125 | 
         
            +
                    rf_model = RandomForestClassifier(n_estimators=10, random_state=42)
         
     | 
| 126 | 
         
            +
                    rf_model.fit(X, y)
         
     | 
| 127 | 
         
            +
                    
         
     | 
| 128 | 
         
            +
                    # Save the model
         
     | 
| 129 | 
         
            +
                    model_path = "model.joblib"
         
     | 
| 130 | 
         
            +
                    joblib.dump(rf_model, model_path)
         
     | 
| 131 | 
         
            +
                    print(f"  Sample model created and saved to {model_path}")
         
     | 
| 132 | 
         
            +
                    
         
     | 
| 133 | 
         
            +
                    # Now load and use the model
         
     | 
| 134 | 
         
            +
                    loaded_model = load_model(model_path)
         
     | 
| 135 | 
         
            +
                    
         
     | 
| 136 | 
         
            +
                    print("\n3. Testing loaded model predictions:")
         
     | 
| 137 | 
         
            +
                    for patient in test_patients:
         
     | 
| 138 | 
         
            +
                        risk_score = predict_readmission_risk(loaded_model, patient)
         
     | 
| 139 | 
         
            +
                        risk_percent = risk_score * 100
         
     | 
| 140 | 
         
            +
                        print(f"  Patient {patient['id']} ({patient['name']}): Risk Score = {risk_percent:.1f}%")
         
     | 
| 141 | 
         
            +
                        
         
     | 
| 142 | 
         
            +
                except ImportError:
         
     | 
| 143 | 
         
            +
                    print("\nSkipping sklearn model creation (sklearn not available).")
         
     | 
| 144 | 
         
            +
                    print("Using dummy prediction function instead:")
         
     | 
| 145 | 
         
            +
                    
         
     | 
| 146 | 
         
            +
                    for patient in test_patients:
         
     | 
| 147 | 
         
            +
                        risk_score = predict_readmission_risk(None, patient)
         
     | 
| 148 | 
         
            +
                        risk_percent = risk_score * 100
         
     | 
| 149 | 
         
            +
                        print(f"  Patient {patient['id']} ({patient['name']}): Risk Score = {risk_percent:.1f}%")
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                print("\nDemo complete. Implement this model in your discharge workflow to identify high-risk patients.")
         
     | 
    	
        requirements.txt
    CHANGED
    
    | 
         @@ -2,4 +2,5 @@ openai 
     | 
|
| 2 | 
         
             
            reportlab
         
     | 
| 3 | 
         
             
            numpy
         
     | 
| 4 | 
         
             
            pandas
         
     | 
| 5 | 
         
            -
            joblib
         
     | 
| 
         | 
| 
         | 
|
| 2 | 
         
             
            reportlab
         
     | 
| 3 | 
         
             
            numpy
         
     | 
| 4 | 
         
             
            pandas
         
     | 
| 5 | 
         
            +
            joblib
         
     | 
| 6 | 
         
            +
            scikit-learn
         
     |