File size: 6,001 Bytes
0683b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Gradio.py
import gradio as gr
import pandas as pd
import joblib
import shap
import numpy as np
import matplotlib
matplotlib.use("Agg")  # 无交互后端更稳
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

# ====== 路径与特征 ======
MODEL_PATH = "models/SVM_pipeline.pkl"
BG_PATH    = "data/bg.csv"
feature_labels = [
    "HGB (g/L)", "HDL-C (mmol/L)", "DBIL (μmol/L)", "AST/ALT", "UA (μmol/L)",
    "GFR (mL/min/1.73 m²)", "PNI", "HALP", "AAPR", "conuts"
]
feature_names = ["HGB","HDL_C","DBIL","AST_ALT","UA","GFR","PNI","HALP","AAPR","conuts"]

# ====== 加载模型和背景 ======
pipeline = joblib.load(MODEL_PATH)
bg_df = pd.read_csv(BG_PATH)
bg_array = bg_df[feature_names].to_numpy(dtype=np.float64)

# ====== 全局 KernelExplainer(只建一次) ======
def _predict_proba_nd(x_nd: np.ndarray) -> np.ndarray:
    df = pd.DataFrame(x_nd, columns=feature_names)
    return pipeline.predict_proba(df)

explainer = shap.KernelExplainer(_predict_proba_nd, bg_array)

def predict_and_shap(HGB, HDL_C, DBIL, AST_ALT, UA, GFR, PNI, HALP, AAPR, conuts, nsamples=200):
    status_msgs = []
    try:
        # 1) 输入与补全
        input_df = pd.DataFrame([[HGB, HDL_C, DBIL, AST_ALT, UA, GFR, PNI, HALP, AAPR, conuts]],
                                columns=feature_names).apply(pd.to_numeric, errors="coerce")
        if input_df.isnull().values.any():
            med = pd.Series(np.median(bg_array, axis=0), index=feature_names)
            input_df = input_df.fillna(med)
            status_msgs.append("Missing values filled with background medians.")

        # 2) 概率
        prob = float(pipeline.predict_proba(input_df)[0, 1])
        status_msgs.append(f"Pred prob computed: {prob:.3f}")

        # 3) SHAP
        x_row = input_df.to_numpy(dtype=np.float64)  # (1, n_features)
        shap_out = explainer.shap_values(x_row, nsamples=int(nsamples))

        # —— 统一提取“正类”一维向量 (n_features,) —— 
        if isinstance(shap_out, list):
            sv = np.asarray(shap_out[1], dtype=np.float64)
            if sv.ndim == 2:
                sv = sv[0, :]
        else:
            sv = np.asarray(shap_out, dtype=np.float64)
            if sv.ndim == 3:      # (1, n_features, n_classes)
                sv = sv[0, :, 1]  # 正类通道
            elif sv.ndim == 2:    # (1, n_features)
                sv = sv[0, :]
            else:
                sv = sv.reshape(-1)

        x_1d = x_row[0, :].astype(np.float64)
        status_msgs.append(f"SHAP 1D shape: {sv.shape}; features: {x_1d.shape}")

        # base value 取正类
        ev = explainer.expected_value
        if isinstance(ev, (list, np.ndarray)):
            ev = np.asarray(ev).reshape(-1)
            base_val = float(ev[1] if len(ev) > 1 else ev[0])
        else:
            base_val = float(ev)

        fnames = [str(f) for f in feature_names]

        # 4) 力图(关键:不要先建 fig;让 SHAP 画完后用 plt.gcf() 接回真正的 Figure)
        try:
            plt.close('all')  # 清理历史句柄,防串扰
            shap.force_plot(base_val, sv, x_1d,
                            feature_names=fnames,
                            matplotlib=True, show=False)
            fig = plt.gcf()               # 取 SHAP 实际绘制的 Figure
            fig.set_size_inches(8, 4)     # 调整尺寸
            plt.tight_layout()
            status_msgs.append("Rendered force plot (matplotlib) on current figure.")
            return round(prob, 3), fig, "\n".join(status_msgs)
        except Exception as e_force:
            status_msgs.append(f"Force-plot failed: {repr(e_force)}; fallback=bar")

        # 5) 条形图兜底(返回实际 fig)
        order = np.argsort(np.abs(sv))[::-1]
        topk = order[:min(10, sv.shape[0])]
        plt.close('all')
        fig = plt.figure(figsize=(8, 5), dpi=160)
        plt.barh(np.array(fnames)[topk], sv[topk])
        plt.xlabel("SHAP value")
        plt.title("Top features (single-sample contribution)")
        plt.gca().invert_yaxis()
        plt.tight_layout()
        status_msgs.append("Rendered bar fallback.")
        return round(prob, 3), fig, "\n".join(status_msgs)

    except Exception as e:
        return None, None, f"Fatal error: {repr(e)}"


# ====== Blocks 界面 ======
example_values = [137, 1.76, 8.6, 0.97, 310, 75.4, 44, 60.8, 0.486, 4, 200]

with gr.Blocks() as demo:
    gr.Markdown(
        "### SVM Meige Risk Prediction & SHAP Explanation\n"
        "Enter 10 indicators with **units** to predict risk and view an individualized explanation.\n\n"
        "**Example**: HGB=137 g/L, HDL‑C=1.76 mmol/L, DBIL=8.6 μmol/L, AST/ALT=0.97, UA=310 μmol/L, "
        "GFR=75.4 mL/min/1.73 m², PNI=44, HALP=60.8, AAPR=0.486, conuts=4."
    )
    with gr.Row():
        with gr.Column(scale=1):
            num_inputs = [gr.Number(label=feature_labels[i], precision=3) for i in range(10)]
            ns_slider = gr.Slider(100, 400, value=200, step=50, label="SHAP nsamples")
            btn_fill = gr.Button("Fill with Example")
            btn_predict = gr.Button("Predict")
        with gr.Column(scale=1):
            out_prob = gr.Number(label="Predicted Probability")
            out_plot = gr.Plot(label="SHAP Force (fallback: bar)")   # 改成 Plot
            out_log  = gr.Textbox(label="Status", lines=6)

    def fill_example():
        return tuple(example_values)

    fill_evt = btn_fill.click(fn=fill_example, outputs=[*num_inputs, ns_slider])
    fill_evt.then(fn=predict_and_shap, inputs=[*num_inputs, ns_slider], outputs=[out_prob, out_plot, out_log])
    btn_predict.click(fn=predict_and_shap, inputs=[*num_inputs, ns_slider], outputs=[out_prob, out_plot, out_log])

if __name__ == "__main__":
    demo.launch()          # 不要写 server_port / share