Spaces:
Sleeping
Sleeping
File size: 6,001 Bytes
0683b82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Gradio.py
import gradio as gr
import pandas as pd
import joblib
import shap
import numpy as np
import matplotlib
matplotlib.use("Agg") # 无交互后端更稳
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
# ====== 路径与特征 ======
MODEL_PATH = "models/SVM_pipeline.pkl"
BG_PATH = "data/bg.csv"
feature_labels = [
"HGB (g/L)", "HDL-C (mmol/L)", "DBIL (μmol/L)", "AST/ALT", "UA (μmol/L)",
"GFR (mL/min/1.73 m²)", "PNI", "HALP", "AAPR", "conuts"
]
feature_names = ["HGB","HDL_C","DBIL","AST_ALT","UA","GFR","PNI","HALP","AAPR","conuts"]
# ====== 加载模型和背景 ======
pipeline = joblib.load(MODEL_PATH)
bg_df = pd.read_csv(BG_PATH)
bg_array = bg_df[feature_names].to_numpy(dtype=np.float64)
# ====== 全局 KernelExplainer(只建一次) ======
def _predict_proba_nd(x_nd: np.ndarray) -> np.ndarray:
df = pd.DataFrame(x_nd, columns=feature_names)
return pipeline.predict_proba(df)
explainer = shap.KernelExplainer(_predict_proba_nd, bg_array)
def predict_and_shap(HGB, HDL_C, DBIL, AST_ALT, UA, GFR, PNI, HALP, AAPR, conuts, nsamples=200):
status_msgs = []
try:
# 1) 输入与补全
input_df = pd.DataFrame([[HGB, HDL_C, DBIL, AST_ALT, UA, GFR, PNI, HALP, AAPR, conuts]],
columns=feature_names).apply(pd.to_numeric, errors="coerce")
if input_df.isnull().values.any():
med = pd.Series(np.median(bg_array, axis=0), index=feature_names)
input_df = input_df.fillna(med)
status_msgs.append("Missing values filled with background medians.")
# 2) 概率
prob = float(pipeline.predict_proba(input_df)[0, 1])
status_msgs.append(f"Pred prob computed: {prob:.3f}")
# 3) SHAP
x_row = input_df.to_numpy(dtype=np.float64) # (1, n_features)
shap_out = explainer.shap_values(x_row, nsamples=int(nsamples))
# —— 统一提取“正类”一维向量 (n_features,) ——
if isinstance(shap_out, list):
sv = np.asarray(shap_out[1], dtype=np.float64)
if sv.ndim == 2:
sv = sv[0, :]
else:
sv = np.asarray(shap_out, dtype=np.float64)
if sv.ndim == 3: # (1, n_features, n_classes)
sv = sv[0, :, 1] # 正类通道
elif sv.ndim == 2: # (1, n_features)
sv = sv[0, :]
else:
sv = sv.reshape(-1)
x_1d = x_row[0, :].astype(np.float64)
status_msgs.append(f"SHAP 1D shape: {sv.shape}; features: {x_1d.shape}")
# base value 取正类
ev = explainer.expected_value
if isinstance(ev, (list, np.ndarray)):
ev = np.asarray(ev).reshape(-1)
base_val = float(ev[1] if len(ev) > 1 else ev[0])
else:
base_val = float(ev)
fnames = [str(f) for f in feature_names]
# 4) 力图(关键:不要先建 fig;让 SHAP 画完后用 plt.gcf() 接回真正的 Figure)
try:
plt.close('all') # 清理历史句柄,防串扰
shap.force_plot(base_val, sv, x_1d,
feature_names=fnames,
matplotlib=True, show=False)
fig = plt.gcf() # 取 SHAP 实际绘制的 Figure
fig.set_size_inches(8, 4) # 调整尺寸
plt.tight_layout()
status_msgs.append("Rendered force plot (matplotlib) on current figure.")
return round(prob, 3), fig, "\n".join(status_msgs)
except Exception as e_force:
status_msgs.append(f"Force-plot failed: {repr(e_force)}; fallback=bar")
# 5) 条形图兜底(返回实际 fig)
order = np.argsort(np.abs(sv))[::-1]
topk = order[:min(10, sv.shape[0])]
plt.close('all')
fig = plt.figure(figsize=(8, 5), dpi=160)
plt.barh(np.array(fnames)[topk], sv[topk])
plt.xlabel("SHAP value")
plt.title("Top features (single-sample contribution)")
plt.gca().invert_yaxis()
plt.tight_layout()
status_msgs.append("Rendered bar fallback.")
return round(prob, 3), fig, "\n".join(status_msgs)
except Exception as e:
return None, None, f"Fatal error: {repr(e)}"
# ====== Blocks 界面 ======
example_values = [137, 1.76, 8.6, 0.97, 310, 75.4, 44, 60.8, 0.486, 4, 200]
with gr.Blocks() as demo:
gr.Markdown(
"### SVM Meige Risk Prediction & SHAP Explanation\n"
"Enter 10 indicators with **units** to predict risk and view an individualized explanation.\n\n"
"**Example**: HGB=137 g/L, HDL‑C=1.76 mmol/L, DBIL=8.6 μmol/L, AST/ALT=0.97, UA=310 μmol/L, "
"GFR=75.4 mL/min/1.73 m², PNI=44, HALP=60.8, AAPR=0.486, conuts=4."
)
with gr.Row():
with gr.Column(scale=1):
num_inputs = [gr.Number(label=feature_labels[i], precision=3) for i in range(10)]
ns_slider = gr.Slider(100, 400, value=200, step=50, label="SHAP nsamples")
btn_fill = gr.Button("Fill with Example")
btn_predict = gr.Button("Predict")
with gr.Column(scale=1):
out_prob = gr.Number(label="Predicted Probability")
out_plot = gr.Plot(label="SHAP Force (fallback: bar)") # 改成 Plot
out_log = gr.Textbox(label="Status", lines=6)
def fill_example():
return tuple(example_values)
fill_evt = btn_fill.click(fn=fill_example, outputs=[*num_inputs, ns_slider])
fill_evt.then(fn=predict_and_shap, inputs=[*num_inputs, ns_slider], outputs=[out_prob, out_plot, out_log])
btn_predict.click(fn=predict_and_shap, inputs=[*num_inputs, ns_slider], outputs=[out_prob, out_plot, out_log])
if __name__ == "__main__":
demo.launch() # 不要写 server_port / share
|