Spaces:
Sleeping
Sleeping
File size: 3,351 Bytes
b3ed7ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
import pandas as pd
import joblib
import shap
import numpy as np
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
# ====== 模型与背景数据 ======
MODEL_PATH = "models/SVM_pipeline.pkl"
BG_PATH = "data/bg.csv"
feature_names = ["HGB", "HDL_C", "DBIL", "AST_ALT", "UA", "GFR", "PNI", "HALP", "AAPR", "conuts"]
pipeline = joblib.load(MODEL_PATH)
bg_df = pd.read_csv(BG_PATH)
bg_array = bg_df[feature_names].to_numpy(dtype=np.float64)
def _predict_proba_nd(x_nd):
df = pd.DataFrame(x_nd, columns=feature_names)
return pipeline.predict_proba(df)
explainer = shap.KernelExplainer(_predict_proba_nd, bg_array)
def predict_and_explain(HGB, HDL_C, DBIL, AST_ALT, UA, GFR, ALB, LYM, PLT, ALP, CHOL, nsamples=200):
try:
# 自动派生变量
PNI = ALB + 5 * LYM
HALP = HGB * ALB * LYM / PLT
AAPR = ALB / ALP
conuts = (
(0 if ALB >= 35 else 2 if ALB >= 30 else 4 if ALB >= 25 else 6) +
(0 if LYM >= 1.6 else 1 if LYM >= 1.2 else 2 if LYM >= 0.8 else 3) +
(0 if CHOL >= 4.65 else 1 if CHOL >= 3.10 else 2 if CHOL >= 2.59 else 3)
)
x_row = [[HGB, HDL_C, DBIL, AST_ALT, UA, GFR, PNI, HALP, AAPR, conuts]]
input_df = pd.DataFrame(x_row, columns=feature_names)
prob = float(pipeline.predict_proba(input_df)[0, 1])
shap_out = explainer.shap_values(np.array(x_row), nsamples=nsamples)
sv = shap_out[1][0] if isinstance(shap_out, list) else shap_out[0]
base_val = explainer.expected_value[1] if isinstance(explainer.expected_value, list) else explainer.expected_value
plt.close('all')
shap.force_plot(base_val, sv, x_row[0], feature_names=feature_names, matplotlib=True, show=False)
fig = plt.gcf()
fig.set_size_inches(8, 4)
plt.tight_layout()
return round(prob, 3), fig, "Success"
except Exception as e:
return None, None, f"Error: {e}"
example_values = [137, 1.76, 8.6, 0.97, 310, 75.4, 33, 2.2, 164, 67.9, 2.8, 200]
with gr.Blocks() as demo:
gr.Markdown("### Logistic Regression Risk Prediction with SHAP Explanation")
with gr.Row():
with gr.Column():
inputs = [
gr.Number(label="HGB (g/L)"),
gr.Number(label="HDL-C (mmol/L)"),
gr.Number(label="DBIL (μmol/L)"),
gr.Number(label="AST/ALT"),
gr.Number(label="UA (μmol/L)"),
gr.Number(label="GFR (mL/min/1.73 m²)"),
gr.Number(label="ALB (g/L)"),
gr.Number(label="LYM (×10⁹/L)"),
gr.Number(label="PLT (×10⁹/L)"),
gr.Number(label="ALP (U/L)"),
gr.Number(label="CHOL (mmol/L)")
]
ns_slider = gr.Slider(100, 400, value=200, step=50, label="SHAP nsamples")
gr.Button("Fill Example").click(lambda: tuple(example_vals), outputs=[*inputs, ns_slider])
gr.Button("Predict").click(fn=predict_and_explain,
inputs=[*inputs, ns_slider],
outputs=[gr.Number(label="Risk"), gr.Plot(), gr.Textbox(label="Status", lines=4)])
with gr.Column():
pass
demo.launch()
|