Spaces:
Sleeping
Sleeping
File size: 7,046 Bytes
7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 7aa125b 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 b3ed7ae 7876a01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# app.py (robust, server-safe)
import gradio as gr
import pandas as pd
import joblib
import shap
import numpy as np
import matplotlib
matplotlib.use("Agg") # 非交互后端,服务器端更稳
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
# ====== 模型与背景数据 ======
MODEL_PATH = "models/SVM_pipeline.pkl"
BG_PATH = "data/bg.csv"
# 模型最终需要的10个特征(顺序必须与训练一致)
feature_names = ["HGB", "HDL_C", "DBIL", "AST_ALT", "UA", "GFR", "PNI", "HALP", "AAPR", "conuts"]
# 加载模型与背景
pipeline = joblib.load(MODEL_PATH)
bg_df = pd.read_csv(BG_PATH)
bg_array = bg_df[feature_names].to_numpy(dtype=np.float64)
# 预测函数(供 KernelExplainer 调用)
def _predict_proba_nd(x_nd: np.ndarray) -> np.ndarray:
df = pd.DataFrame(x_nd, columns=feature_names)
return pipeline.predict_proba(df)
# 只初始化一次 explainer(性能更稳)
explainer = shap.KernelExplainer(_predict_proba_nd, bg_array)
def _render_force_plot(base_val: float, shap_1d: np.ndarray, feat_1d: np.ndarray, fnames):
"""返回 matplotlib Figure(旧接口,服务器端稳定)"""
plt.close('all')
shap.force_plot(
base_val, np.asarray(shap_1d).reshape(-1), np.asarray(feat_1d).reshape(-1),
feature_names=list(fnames), matplotlib=True, show=False
)
fig = plt.gcf()
fig.set_size_inches(8, 4)
plt.tight_layout()
return fig
def predict_and_explain(
HGB, HDL_C, DBIL, AST_ALT, UA, GFR,
ALB, LYM, PLT, ALP, CHOL,
nsamples=200
):
status = []
try:
# ---- 1) 衍生指标(由原始输入计算)----
try:
HGB = float(HGB); HDL_C = float(HDL_C); DBIL = float(DBIL); AST_ALT = float(AST_ALT)
UA = float(UA); GFR = float(GFR)
ALB = float(ALB); LYM = float(LYM); PLT = float(PLT)
ALP = float(ALP); CHOL = float(CHOL)
except Exception:
return None, None, "Error: some inputs are not numeric."
# 防极端值(避免除0)
if PLT <= 0 or ALP <= 0:
return None, None, "Error: PLT and ALP must be > 0."
PNI = ALB + 5.0 * LYM
HALP = HGB * ALB * LYM / PLT
AAPR = ALB / ALP
conuts = (
(0 if ALB >= 35 else 2 if ALB >= 30 else 4 if ALB >= 25 else 6) +
(0 if LYM >= 1.6 else 1 if LYM >= 1.2 else 2 if LYM >= 0.8 else 3) +
(0 if CHOL >= 4.65 else 1 if CHOL >= 3.10 else 2 if CHOL >= 2.59 else 3)
)
x_row = np.array([[HGB, HDL_C, DBIL, AST_ALT, UA, GFR, PNI, HALP, AAPR, conuts]], dtype=np.float64)
status.append(f"Derived: PNI={PNI:.3f}, HALP={HALP:.3f}, AAPR={AAPR:.3f}, CONUTS={conuts}")
# ---- 2) 概率 ----
prob = float(pipeline.predict_proba(pd.DataFrame(x_row, columns=feature_names))[0, 1])
status.append(f"Pred prob computed: {prob:.3f}")
# ---- 3) SHAP 计算 ----
ns = int(nsamples) if nsamples is not None else 200
shap_out = explainer.shap_values(x_row, nsamples=ns)
# 统一提取“正类”一维向量
if isinstance(shap_out, list):
sv = np.asarray(shap_out[1], dtype=np.float64)
if sv.ndim == 2:
sv = sv[0, :]
else:
sv = np.asarray(shap_out, dtype=np.float64)
if sv.ndim == 3: # (1, n_features, n_classes)
sv = sv[0, :, 1]
elif sv.ndim == 2: # (1, n_features)
sv = sv[0, :]
else:
sv = sv.reshape(-1)
status.append(f"SHAP 1D shape: {sv.shape}; features: {x_row.shape[1:]}")
# base value 取正类
ev = explainer.expected_value
if isinstance(ev, (list, np.ndarray)):
ev = np.asarray(ev).reshape(-1)
base_val = float(ev[1] if len(ev) > 1 else ev[0])
else:
base_val = float(ev)
# ---- 4) 绘图:优先力图;失败则条形图兜底 ----
try:
fig = _render_force_plot(base_val, sv, x_row[0, :], feature_names)
status.append("Rendered force plot (matplotlib).")
return round(prob, 3), fig, "\n".join(status)
except Exception as e_force:
status.append(f"Force-plot failed: {repr(e_force)}; fallback=bar")
order = np.argsort(np.abs(sv))[::-1]
topk = order[:min(10, sv.shape[0])]
plt.close('all')
fig = plt.figure(figsize=(8, 5), dpi=160)
plt.barh(np.array(feature_names)[topk], sv[topk])
plt.xlabel("SHAP value")
plt.title("Top features (single-sample contribution)")
plt.gca().invert_yaxis()
plt.tight_layout()
status.append("Rendered bar fallback.")
return round(prob, 3), fig, "\n".join(status)
except Exception as e:
return None, None, f"Fatal error: {repr(e)}"
# ====== 示例:一组“原始指标”可复现你之前的 PNI/HALP/AAPR/CONUTS ======
# 对应:PNI=44, HALP≈60.8, AAPR≈0.486, CONUTS=4
example_values = [167, 1.76, 8.6, 0.97, 310, 75, 33, 2.2, 164, 68, 2.8, 200]
# 顺序:HGB, HDL_C, DBIL, AST_ALT, UA, GFR, ALB, LYM, PLT, ALP, CHOL, nsamples
# ====== Gradio 界面 ======
with gr.Blocks() as demo:
gr.Markdown(
"### Meige Risk Prediction (SVM) with SHAP Explanation\n"
"Enter **original clinical indicators**; the app will derive PNI/HALP/AAPR/CONUTS internally.\n\n"
"**Units**: HGB (g/L), HDL‑C (mmol/L), DBIL (μmol/L), AST/ALT (ratio), UA (μmol/L), "
"GFR (mL/min/1.73 m²), ALB (g/L), LYM (×10⁹/L), PLT (×10⁹/L), ALP (U/L), CHOL (mmol/L)."
)
with gr.Row():
with gr.Column(scale=1):
inputs = [
gr.Number(label="HGB (g/L)"),
gr.Number(label="HDL-C (mmol/L)"),
gr.Number(label="DBIL (μmol/L)"),
gr.Number(label="AST/ALT"),
gr.Number(label="UA (μmol/L)"),
gr.Number(label="GFR (mL/min/1.73 m²)"),
gr.Number(label="ALB (g/L)"),
gr.Number(label="LYM (×10⁹/L)"),
gr.Number(label="PLT (×10⁹/L)"),
gr.Number(label="ALP (U/L)"),
gr.Number(label="CHOL (mmol/L)")
]
ns_slider = gr.Slider(100, 400, value=200, step=50, label="SHAP nsamples")
btn_fill = gr.Button("Fill Example")
btn_predict = gr.Button("Predict")
with gr.Column(scale=1):
out_prob = gr.Number(label="Predicted Probability")
out_plot = gr.Plot(label="SHAP Force Plot (fallback: bar)")
out_log = gr.Textbox(label="Status", lines=6)
def _fill_example():
return tuple(example_values)
btn_fill.click(fn=_fill_example, outputs=[*inputs, ns_slider])
btn_predict.click(
fn=predict_and_explain,
inputs=[*inputs, ns_slider],
outputs=[out_prob, out_plot, out_log]
)
if __name__ == "__main__":
demo.launch()
|