import gradio as gr import pandas as pd import joblib import shap import numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore") # ====== 模型与背景数据 ====== MODEL_PATH = "models/SVM_pipeline.pkl" BG_PATH = "data/bg.csv" feature_names = ["HGB", "HDL_C", "DBIL", "AST_ALT", "UA", "GFR", "PNI", "HALP", "AAPR", "conuts"] pipeline = joblib.load(MODEL_PATH) bg_df = pd.read_csv(BG_PATH) bg_array = bg_df[feature_names].to_numpy(dtype=np.float64) def _predict_proba_nd(x_nd): df = pd.DataFrame(x_nd, columns=feature_names) return pipeline.predict_proba(df) explainer = shap.KernelExplainer(_predict_proba_nd, bg_array) def predict_and_explain(HGB, HDL_C, DBIL, AST_ALT, UA, GFR, ALB, LYM, PLT, ALP, CHOL, nsamples=200): try: # 自动派生变量 PNI = ALB + 5 * LYM HALP = HGB * ALB * LYM / PLT AAPR = ALB / ALP conuts = ( (0 if ALB >= 35 else 2 if ALB >= 30 else 4 if ALB >= 25 else 6) + (0 if LYM >= 1.6 else 1 if LYM >= 1.2 else 2 if LYM >= 0.8 else 3) + (0 if CHOL >= 4.65 else 1 if CHOL >= 3.10 else 2 if CHOL >= 2.59 else 3) ) x_row = [[HGB, HDL_C, DBIL, AST_ALT, UA, GFR, PNI, HALP, AAPR, conuts]] input_df = pd.DataFrame(x_row, columns=feature_names) prob = float(pipeline.predict_proba(input_df)[0, 1]) shap_out = explainer.shap_values(np.array(x_row), nsamples=nsamples) sv = shap_out[1][0] if isinstance(shap_out, list) else shap_out[0] base_val = explainer.expected_value[1] if isinstance(explainer.expected_value, list) else explainer.expected_value plt.close('all') shap.force_plot(base_val, sv, x_row[0], feature_names=feature_names, matplotlib=True, show=False) fig = plt.gcf() fig.set_size_inches(8, 4) plt.tight_layout() return round(prob, 3), fig, "Success" except Exception as e: return None, None, f"Error: {e}" example_values = [137, 1.76, 8.6, 0.97, 310, 75.4, 33, 2.2, 164, 67.9, 2.8, 200] with gr.Blocks() as demo: gr.Markdown("### Logistic Regression Risk Prediction with SHAP Explanation") with gr.Row(): with gr.Column(): inputs = [ gr.Number(label="HGB (g/L)"), gr.Number(label="HDL-C (mmol/L)"), gr.Number(label="DBIL (μmol/L)"), gr.Number(label="AST/ALT"), gr.Number(label="UA (μmol/L)"), gr.Number(label="GFR (mL/min/1.73 m²)"), gr.Number(label="ALB (g/L)"), gr.Number(label="LYM (×10⁹/L)"), gr.Number(label="PLT (×10⁹/L)"), gr.Number(label="ALP (U/L)"), gr.Number(label="CHOL (mmol/L)") ] ns_slider = gr.Slider(100, 400, value=200, step=50, label="SHAP nsamples") gr.Button("Fill Example").click(lambda: tuple(example_vals), outputs=[*inputs, ns_slider]) gr.Button("Predict").click(fn=predict_and_explain, inputs=[*inputs, ns_slider], outputs=[gr.Number(label="Risk"), gr.Plot(), gr.Textbox(label="Status", lines=4)]) with gr.Column(): pass demo.launch()