File size: 23,496 Bytes
9f57ecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
import copy
import json
import math
import os
import random
import re
import ast
from typing import Dict
import torch
import transformers
import yaml
from qwen_vl_utils import smart_resize, process_vision_info
from torch.utils.data import Dataset
from gui_actor.constants import (
IGNORE_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_POINTER_START_TOKEN,
DEFAULT_POINTER_PAD_TOKEN,
DEFAULT_POINTER_END_TOKEN,
ACTION_PATTENS_XY,
ADDITIONAL_SPECIAL_TOKENS,
assistant_template,
chat_template,
grounding_system_message,
)
from gui_actor.trainer import rank0_print
def reformat_coordinates(text):
"""
(1) Find all the coordinates in the text.
(2) Replace the coordinates with the special tokens.
(3) Return the new text and the coordinates as a list of (x, y), where x in [0, 1] and y in [0, 1].
"""
epsilon = 0.001
def adjust_coord(c):
"""
Adjust coordinate if it is too close to 0 or 1.
"""
if abs(c) < epsilon:
return epsilon
elif abs(c - 1) < epsilon:
return 1 - epsilon
return c
all_matches = []
for pattern in ACTION_PATTENS_XY:
matches = list(re.finditer(pattern, text))
for match in matches:
all_matches.append((match.start(), match.groups()))
if pattern == ACTION_PATTENS_XY[0]:
target_text = f"{DEFAULT_POINTER_START_TOKEN}{DEFAULT_POINTER_PAD_TOKEN}{DEFAULT_POINTER_END_TOKEN}"
else:
target_text = f"{DEFAULT_POINTER_START_TOKEN}{DEFAULT_POINTER_PAD_TOKEN}{DEFAULT_POINTER_END_TOKEN}, {DEFAULT_POINTER_START_TOKEN}{DEFAULT_POINTER_PAD_TOKEN}{DEFAULT_POINTER_END_TOKEN}"
text = re.sub(
pattern,
target_text,
text
)
coordinates = []
all_matches.sort(key=lambda x: x[0])
# Extract coordinates in order
for _, groups in all_matches:
# When two coordinate values are found, parse them as one (x, y) pair.
if len(groups) == 2:
x_str, y_str = groups
x = adjust_coord(ast.literal_eval(x_str))
y = adjust_coord(ast.literal_eval(y_str))
coordinates.append((x, y))
# When four coordinate values are found, parse them as two pairs.
elif len(groups) == 4:
x1_str, y1_str, x2_str, y2_str = groups
x1 = adjust_coord(ast.literal_eval(x1_str))
y1 = adjust_coord(ast.literal_eval(y1_str))
x2 = adjust_coord(ast.literal_eval(x2_str))
y2 = adjust_coord(ast.literal_eval(y2_str))
coordinates.append((x1, y1))
coordinates.append((x2, y2))
return text, coordinates
def get_token_index(image_processor, image, point_x, point_y):
"""
Get the index of the visual token that contains the point (x, y).
Args:
image_processor: the image processor
image: the image in PIL format
point_x: the x coordinate of the point, in [0, 1].
point_y: the y coordinate of the point, in [0, 1].
"""
if len(image) != 1:
raise ValueError(f"Expected 1 image, got {len(image)}")
# get the original image size and the resized image size
image = image[0]
w, h = image.size
px, py = w * point_x, h * point_y
# rank0_print(f"px: {px}, py: {py}")
# get the token index
merge_patch_size = image_processor.patch_size * image_processor.merge_size
x_index = math.floor(px / merge_patch_size)
y_index = math.floor(py / merge_patch_size)
visual_token_index = y_index * (w // merge_patch_size) + x_index
# merge all above print into one line
return visual_token_index
def get_multi_patch_labels(image_processor, image, bbox_gt):
"""
Get the multi-patch labels for the bounding box.
Args:
image_processor: the image processor
image: the image in PIL format
bbox_gt: the bounding box in the format of (x_min, y_min, x_max, y_max) [0,1]
"""
if len(image) != 1:
raise ValueError(f"Expected 1 image, got {len(image)}")
# Get the original image size and the resized image size
image = image[0]
w, h = image.size
bbox_gt = [bbox_gt[0]*w, bbox_gt[1]*h, bbox_gt[2]*w, bbox_gt[3]*h]
# Extract bounding box coordinates
x_min, y_min, x_max, y_max = bbox_gt
x_min = max(0, x_min)
y_min = max(0, y_min)
x_max = min(w, x_max)
y_max = min(h, y_max)
merge_patch_size = image_processor.patch_size * image_processor.merge_size
assert w % merge_patch_size == 0 and h % merge_patch_size == 0, f"Image size {w}x{h} is not divisible by merge_patch_size {merge_patch_size}"
grid_h, grid_w = h // merge_patch_size, w // merge_patch_size
binary_mask = torch.zeros(grid_h * grid_w)
# Iterate through all patches, check if they overlap with the bounding box
for y_idx in range(grid_h):
for x_idx in range(grid_w):
# Calculate patch boundaries
patch_x_min = x_idx * merge_patch_size
patch_y_min = y_idx * merge_patch_size
patch_x_max = patch_x_min + merge_patch_size
patch_y_max = patch_y_min + merge_patch_size
# Check if patch overlaps with the bounding box
if not (patch_x_max <= x_min or patch_x_min >= x_max or
patch_y_max <= y_min or patch_y_min >= y_max):
# Calculate patch index in the flattened grid
patch_idx = y_idx * grid_w + x_idx
binary_mask[patch_idx] = 1
return binary_mask
def token_index_to_coordinates(image_processor, visual_token_index, image_width, image_height):
merge_patch_size = image_processor.patch_size * image_processor.merge_size
x_index = visual_token_index % (image_width // merge_patch_size)
y_index = visual_token_index // (image_width // merge_patch_size)
px = x_index * merge_patch_size + merge_patch_size / 2
py = y_index * merge_patch_size + merge_patch_size / 2
return px, py
class LazySupervisedDataset(Dataset):
def __init__(
self,
tokenizer: transformers.PreTrainedTokenizer,
processor: transformers.ProcessorMixin,
data_path: str,
data_args,
):
super().__init__()
self.tokenizer = tokenizer
self.processor = processor
self.list_data_dict = []
self.list_image_path = []
self.pointer_pad_token_id = tokenizer.encode(DEFAULT_POINTER_PAD_TOKEN)[0]
self.pointer_start_token_id = tokenizer.encode(DEFAULT_POINTER_START_TOKEN)[0]
self.pointer_end_token_id = tokenizer.encode(DEFAULT_POINTER_END_TOKEN)[0]
# Handle multiple JSON files specified in the data_path
if "{" in data_path and "}" in data_path:
base_path, file_pattern = re.match(r"^(.*)\{(.*)\}\.json$", data_path).groups()
file_names = file_pattern.split(",")
rank0_print(f"Loading {file_names} from {base_path}")
data_args.dataset_paths = []
for file_name in file_names:
data_args.dataset_paths.append(f"{base_path}{file_name}.json")
full_path = f"{base_path}{file_name}.json"
rank0_print(f"Loading {full_path}")
with open(full_path) as file:
cur_data_dict = json.load(file)
rank0_print(f"Loaded {len(cur_data_dict)} samples from {full_path}")
self.list_data_dict.extend(cur_data_dict)
elif data_path.endswith(".yaml"):
with open(data_path) as file:
yaml_data = yaml.safe_load(file)
datasets = yaml_data.get("datasets")
# file should be in the format of:
# datasets:
# - json_path: xxxx1.json
# sampling_strategy: first:1000
# - json_path: xxxx2.json
# sampling_strategy: end:3000
# - json_path: xxxx3.json
# sampling_strategy: random:999
data_args.dataset_paths = [dataset.get("json_path") for dataset in datasets]
for dataset in datasets:
json_path = dataset.get("json_path")
sampling_strategy = dataset.get("sampling_strategy", "all")
images_folder = dataset.get("images_folder")
sampling_number = None
rank0_print(f"Loading {json_path} with {sampling_strategy} sampling strategy")
if json_path.endswith(".jsonl"):
cur_data_dict = []
with open(json_path) as json_file:
for line in json_file:
cur_data_dict.append(json.loads(line.strip()))
elif json_path.endswith(".json"):
# NOTE: we only use json_path with .json now
# Handle the images_folder in yaml
with open(json_path) as json_file:
cur_data_dict = json.load(json_file)
else:
raise ValueError(f"Unsupported file type: {json_path}")
if ":" in sampling_strategy:
sampling_strategy, sampling_number = sampling_strategy.split(":")
if "%" in sampling_number:
sampling_number = math.ceil(int(sampling_number.split("%")[0]) * len(cur_data_dict) / 100)
else:
sampling_number = int(sampling_number)
# Apply the sampling strategy
if sampling_strategy == "first" and sampling_number is not None:
cur_data_dict = cur_data_dict[:sampling_number]
elif sampling_strategy == "end" and sampling_number is not None:
cur_data_dict = cur_data_dict[-sampling_number:]
elif sampling_strategy == "random" and sampling_number is not None:
random.shuffle(cur_data_dict)
cur_data_dict = cur_data_dict[:sampling_number]
rank0_print(f"Loaded {len(cur_data_dict)} samples from {json_path}")
self.list_data_dict.extend(cur_data_dict)
self.list_image_path.extend([images_folder] * len(cur_data_dict))
else:
data_args.dataset_paths = [data_path]
rank0_print(f"Loading {data_path}")
with open(data_path) as file:
cur_data_dict = json.load(file)
rank0_print(f"Loaded {len(cur_data_dict)} samples from {data_path}")
self.list_data_dict.extend(cur_data_dict)
self.list_image_path.extend([""] * len(cur_data_dict)) # NOTE: the image subfolder is empty...
rank0_print(f"Loaded {len(self.list_data_dict)} samples from {data_path}")
rank0_print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.data_args = data_args
def __len__(self):
return len(self.list_data_dict)
@property
def lengths(self):
length_list = []
for sample in self.list_data_dict:
img_tokens = (
1200 * len(sample["image"]) if isinstance(sample["image"], list) else 1200 if "image" in sample else 0
)
length_list.append(sum(len(conv["value"].split()) for conv in sample["conversations"]) + img_tokens)
return length_list
@property
def modality_lengths(self):
length_list = []
for sample in self.list_data_dict:
cur_len = sum(len(conv["value"].split()) for conv in sample["conversations"])
assert cur_len > 0, f"Conversation length is 0 for {sample}"
img_tokens = (
1200 * len(sample["image"]) if isinstance(sample["image"], list) else 1200 if "image" in sample else 0
)
if "image" in sample or "video" in sample or self.data_args.early_mix_text:
length_list.append(cur_len + img_tokens)
else:
length_list.append(-cur_len)
return length_list
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
sample = self._get_item(i)
if sample is None:
new_index = random.randint(0, len(self.list_data_dict) - 1)
return self.__getitem__(new_index)
else:
return sample
try:
sample = self._get_item(i)
if sample is None:
new_index = random.randint(0, len(self.list_data_dict) - 1)
return self.__getitem__(new_index)
except Exception as e:
print(f"Failed to fetch sample {i}. Exception:", e)
new_index = random.randint(0, len(self.list_data_dict) - 1)
return self.__getitem__(new_index)
return sample
def _get_item(self, i) -> Dict[str, torch.Tensor]:
sources = self.list_data_dict[i]
image_path = os.path.join(self.data_args.image_folder, self.list_image_path[i])
if "image" in sources:
image_file = self.list_data_dict[i]["image"]
if type(image_file) is list:
image_list = [os.path.join(image_path, image_file) for image_file in image_file]
else:
image_list = [os.path.join(image_path, image_file)]
sources = copy.deepcopy(sources["conversations"])
elif "video" in sources:
raise NotImplementedError("Video is not supported for Qwen2VL")
else:
sources = copy.deepcopy(sources["conversations"])
item_id = self.list_data_dict[i].get("id", i)
data_dict = self.preprocess_qwen2vl(sources, self.tokenizer, self.processor, image_list, id=item_id)
if isinstance(i, int):
data_dict = {
"input_ids": data_dict["input_ids"][0],
"labels": data_dict["labels"][0],
"coordinates": data_dict["coordinates"][0],
"visual_token_indices_of_coordinates": data_dict["visual_token_indices_of_coordinates"][0],
"pixel_values": data_dict["pixel_values"],
"image_grid_thw": data_dict["image_grid_thw"],
"multi_patch_labels": data_dict["multi_patch_labels"][0], # add multi_patch_labels
}
data_dict["id"] = item_id
# return None if the input_ids is longer than the model_max_length
n_image_tokens = (
data_dict["image_grid_thw"][0][0] *
data_dict["image_grid_thw"][0][1] *
data_dict["image_grid_thw"][0][2] /
self.processor.image_processor.merge_size /
self.processor.image_processor.merge_size
)
if (len(data_dict["input_ids"]) + n_image_tokens) > self.tokenizer.model_max_length:
rank0_print(f"=== Removed data_dict {i} because it is longer than the model_max_length: {len(data_dict['input_ids'])} + {n_image_tokens} > {self.tokenizer.model_max_length}")
return None
return data_dict
def preprocess_qwen2vl(
self,
source, # conversations
tokenizer: transformers.PreTrainedTokenizer,
processor: transformers.ProcessorMixin,
image: list,
system_message: str = grounding_system_message,
agent_mode: bool = True,
chat_template: str = chat_template,
assistant_template: str = assistant_template,
id: int = None,
) -> Dict:
roles = {"human": "user", "gpt": "assistant", "system": "system"}
assistant_template = assistant_template if agent_mode else chat_template
processor.tokenizer = tokenizer
assert tokenizer.additional_special_tokens == ADDITIONAL_SPECIAL_TOKENS
# Apply prompt templates
pixel_values, image_grid_thw = None, None
input_id, target = [], []
coordinates = []
visual_token_indices_of_coordinates = []
multi_patch_labels = []
image_list = []
image_index = 0
## prepare the system message
if roles[source[0]["from"]] == "system":
system_message = source[0]["value"]
source = source[1:self.data_args.max_conv_turns]
# else: use the constant system message
system_input_id = tokenizer.apply_chat_template(
conversation=[{"role": "system", "content": [{"type": "text", "text": system_message}]}],
chat_template=chat_template,
)
input_id += system_input_id
target += [IGNORE_INDEX] * len(system_input_id)
## prepare user-assistant conversation
for conv in source:
# regularize the conversation format
try:
role = conv["role"]
content = conv["content"]
except Exception:
role = conv["from"]
content = conv["value"]
role = roles.get(role, role)
# Count the number of <image> tokens in the content
image_count = content.count(DEFAULT_IMAGE_TOKEN)
if image_count > 0:
assert role == "user", "Images are only supported for user messages"
# include image information regarding to current conversation turn
image_placeholders = []
for _ in range(image_count):
image_placeholders.append({
"type": "image",
"image": image[image_index],
"min_pixels": self.processor.image_processor.min_pixels,
"max_pixels": self.processor.image_processor.max_pixels,
})
image_index += 1
content = content.replace(DEFAULT_IMAGE_TOKEN, "")
conv = {"role": role, "content": image_placeholders + [{"type": "text", "text": content}]}
image_inputs, _ = process_vision_info([conv]) # list of PIL.Image.Image
image_list.extend(image_inputs)
templated_conv = tokenizer.apply_chat_template(
conversation=[conv], chat_template=chat_template, tokenize=False
)
inputs = processor(text=[templated_conv], images=image_inputs, return_tensors="pt")
if pixel_values is None and image_grid_thw is None:
pixel_values = inputs["pixel_values"]
image_grid_thw = inputs["image_grid_thw"]
else:
pixel_values = torch.concat([pixel_values, inputs["pixel_values"]], dim=0)
image_grid_thw = torch.concat([image_grid_thw, inputs["image_grid_thw"]], dim=0)
else:
if role in ["user", "system"]:
conv = {"role": role, "content": [{"type": "text", "text": content}]}
else: # assistant
conv = {
"role": role,
"content": [{"type": "text", "text": content}],
"recipient": conv.get("recipient", "os"),
"end_turn": conv.get("end_turn", True),
"bbox_gt": conv.get("bbox_gt", None),
}
if conv["recipient"] == "os":
if len(image_inputs) == 0:
raise ValueError("No image found for visual grounding")
# replace the coordinates with the special tokens
text, coord = reformat_coordinates(conv["content"][0]["text"])
conv["content"][0]["text"] = text
# rank0_print(f"coord: {coord}")
# get the visual token indices of the coordinates
coordinates.extend(coord)
for (point_x, point_y) in coord:
visual_token_index = get_token_index(
processor.image_processor,
image_list,
point_x,
point_y
)
# px, py = token_index_to_coordinates(
# processor.image_processor,
# visual_token_index,
# image_list[0].size[0], # make sure the size here is after qwen2vl processing
# image_list[0].size[1]
# )
# rank0_print(f"estimated px: {px}, py: {py}")
visual_token_indices_of_coordinates.append(visual_token_index)
if conv["bbox_gt"] is not None:
patch_mask = get_multi_patch_labels(
processor.image_processor,
image_list,
conv["bbox_gt"]
)
multi_patch_labels.append(patch_mask)
templated_conv = tokenizer.apply_chat_template(
conversation=[conv],
chat_template=assistant_template,
tokenize=False,
)
inputs = processor(text=[templated_conv], return_tensors="pt")
encode_id = inputs.input_ids[0].tolist()
input_id += encode_id
if role in ["user", "system"]:
target += [IGNORE_INDEX] * len(encode_id)
else:
target += encode_id
assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}"
# make the labels of all pointer_end_token_id to be IGNORE_INDEX
target = [IGNORE_INDEX if token == self.pointer_end_token_id else token for token in target]
input_ids = torch.tensor([input_id], dtype=torch.long)
targets = torch.tensor([target], dtype=torch.long)
visual_token_indices_of_coordinates = torch.tensor([visual_token_indices_of_coordinates], dtype=torch.long) if len(visual_token_indices_of_coordinates) > 0 else [None]
coordinates = [coordinates] if len(coordinates) > 0 else [None]
# process multi_patch_labels
if len(multi_patch_labels) > 0:
multi_patch_labels = [torch.stack(multi_patch_labels)]
else:
multi_patch_labels = [None]
data_dict = {
"input_ids": input_ids, # tensor(bs x seq_len)
"labels": targets, # tensor(bs x seq_len)
}
if pixel_values is not None:
data_dict["pixel_values"] = pixel_values
data_dict["image_grid_thw"] = image_grid_thw
# if len(coordinates[0]) != len(visual_token_indices_of_coordinates[0]):
# raise ValueError(f"The number of coordinates ({len(coordinates[0])}) does not match the number of image token indices ({len(visual_token_indices_of_coordinates[0])})")
data_dict["coordinates"] = coordinates
data_dict["visual_token_indices_of_coordinates"] = visual_token_indices_of_coordinates
data_dict["multi_patch_labels"] = multi_patch_labels
return data_dict
|