File size: 16,027 Bytes
9f57ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
import torch.nn as nn
import torch.nn.functional as F

from typing import List, Tuple, Union, Optional

from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
    Qwen2_5_VLCausalLMOutputWithPast,
    Qwen2_5_VLForConditionalGeneration,
)
from gui_actor.constants import IGNORE_INDEX
from gui_actor.trainer import rank0_print


def _get_token_embedding_layer(hf_model: nn.Module) -> nn.Module:
    """
    Robustly locate the token embedding layer across HF versions.
    """
    if hasattr(hf_model, "get_input_embeddings") and callable(hf_model.get_input_embeddings):
        return hf_model.get_input_embeddings()
    # Fallbacks (shouldn't be needed on recent transformers, but safe to keep)
    lm = getattr(hf_model, "language_model", None)
    if lm is not None and hasattr(lm, "embed_tokens"):
        return lm.embed_tokens
    raise AttributeError("Could not locate token embedding layer on model (no get_input_embeddings/embed_tokens).")


class QwenVLwithVisionHeadOutputWithPast(Qwen2_5_VLCausalLMOutputWithPast):
    """
    Output class for Qwen2_5_VL with pointer head, extending the base output class.

    Args:
        lm_loss (`torch.FloatTensor` of shape `(1,)`, *optional*):
            Language modeling loss.
        pointer_loss (`torch.FloatTensor` of shape `(1,)`, *optional*):
            Vision pointer network loss.
        pointer_scores (`List[torch.FloatTensor]`, *optional*):
            Attention scores from the pointer network, one tensor per batch item.
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*):
            Combined loss (weighted sum of lm_loss and pointer_loss).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores from the language modeling head.
        past_key_values, hidden_states, attentions, rope_deltas:
            Same as parent class.
    """
    def __init__(self, lm_loss=None, pointer_loss=None, pointer_scores=None, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.lm_loss = lm_loss
        self.pointer_loss = pointer_loss
        self.pointer_scores = pointer_scores


class VisionHead_MultiPatch(nn.Module):
    def __init__(self, d_model, projection_dim, num_attention_heads=8, dropout_rate=0.1):
        super().__init__()
        self.d_model = d_model

        self.projection_enc = nn.Sequential(
            nn.Linear(d_model, projection_dim),
            nn.GELU(),
            nn.Linear(projection_dim, d_model),
        )
        self.projection_dec = nn.Sequential(
            nn.Linear(d_model, projection_dim),
            nn.GELU(),
            nn.Linear(projection_dim, d_model),
        )

        self.self_attention = nn.MultiheadAttention(
            embed_dim=d_model, num_heads=num_attention_heads, dropout=dropout_rate, batch_first=True
        )

        self.layer_norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout_rate)

    def forward(
        self,
        hidden_state_enc,  # [n_enc, d_model]
        hidden_state_dec,  # [n_dec, d_model]
        labels: Optional[torch.Tensor] = None,  # [n_dec, n_enc] binary mask of patches in bbox
        do_single_patch: bool = False,
    ):
        enc_input = hidden_state_enc.unsqueeze(0)
        attn_output, _ = self.self_attention(query=enc_input, key=enc_input, value=enc_input, need_weights=False)
        hidden_state_enc_ctx = self.layer_norm(enc_input + self.dropout(attn_output)).squeeze(0)  # [n_enc, d_model]

        proj_enc = self.projection_enc(hidden_state_enc_ctx)  # [n_enc, d_model]
        proj_dec = self.projection_dec(hidden_state_dec)      # [n_dec, d_model]

        scaling = self.d_model ** 0.5
        patch_logits = torch.matmul(proj_dec, proj_enc.transpose(0, 1)) / scaling  # [n_dec, n_enc]

        attn_weights = F.softmax(patch_logits, dim=-1)

        loss = None
        if (labels is not None) and (not do_single_patch):
            epsilon = 1e-8
            labels_float = labels.float()
            target_dist = labels_float / (labels_float.sum(dim=-1, keepdim=True) + epsilon)
            pred_log_probs = F.log_softmax(patch_logits, dim=-1)
            loss = F.kl_div(pred_log_probs, target_dist, reduction='batchmean')

        if do_single_patch and (labels is not None):
            # NOTE: if you ever enable this branch, use patch_logits for CE
            loss = F.cross_entropy(patch_logits, labels)

        return attn_weights, loss


class Qwen2_5_VLForConditionalGenerationWithPointer(Qwen2_5_VLForConditionalGeneration):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.multi_patch_pointer_head = VisionHead_MultiPatch(self.config.hidden_size, self.config.hidden_size)
        self.pointer_loss_weight = kwargs.get("pointer_loss_weight", 1.0)
        self.lm_loss_weight = kwargs.get("lm_loss_weight", 1.0)
        self.post_init()

        # init rope cache slot (used in return_dict path)
        self.rope_deltas = None

    def reset_loss_weights(self, pointer_loss_weight, lm_loss_weight):
        self.pointer_loss_weight = pointer_loss_weight
        self.lm_loss_weight = lm_loss_weight

    def forward(
        self,
        input_ids: torch.LongTensor = None,  # (batch_size, seq_len)
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
        pixel_values_videos: Optional[torch.FloatTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        rope_deltas: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        second_per_grid_ts: Optional[torch.Tensor] = None,
        # Grounding
        visual_token_indices_of_coordinates: Optional[torch.Tensor] = None,  # (batch_size, n_target)
        multi_patch_labels: Optional[torch.Tensor] = None,                   # list/packed: [(n_target, n_visual), ...]
        if_multi_patch: bool = True,
        coordinates: Optional[List[Tuple[float, float]]] = None,
        verbose: bool = False,
    ) -> Union[Tuple, QwenVLwithVisionHeadOutputWithPast]:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if verbose:
            rank0_print(f"input_ids: {None if input_ids is None else (input_ids.shape, input_ids[0][:5])}")
            rank0_print(f"labels: {None if labels is None else (labels.shape, labels[0][:5])}")
            rank0_print(f"pixel_values: {None if pixel_values is None else pixel_values.shape}")
            rank0_print(f"image_grid_thw: {None if image_grid_thw is None else image_grid_thw.shape}")
            rank0_print(f"coordinates: {coordinates}")
            rank0_print(f"visual_token_indices_of_coordinates: {visual_token_indices_of_coordinates}")
            rank0_print(f"return_dict: {return_dict}")

        if inputs_embeds is None:
            if input_ids is None:
                raise ValueError("Either inputs_embeds or input_ids must be provided.")

            # FIX: use embedding accessor instead of .embed_tokens
            token_embedding = _get_token_embedding_layer(self.model)
            inputs_embeds = token_embedding(input_ids)  # (batch, seq_len, d_model)

            if pixel_values is not None:
                pixel_values = pixel_values.type(self.visual.dtype)
                image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
                n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
                n_image_features = image_embeds.shape[0]
                if n_image_tokens != n_image_features:
                    raise ValueError(
                        f"Image features and image tokens do not match: tokens: {n_image_tokens}, features: {n_image_features}"
                    )
                image_mask = (
                    (input_ids == self.config.image_token_id)
                    .unsqueeze(-1)
                    .expand_as(inputs_embeds)
                    .to(inputs_embeds.device)
                )
                image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
                inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)

            if pixel_values_videos is not None:
                pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
                video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
                n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
                n_video_features = video_embeds.shape[0]
                if n_video_tokens != n_video_features:
                    raise ValueError(
                        f"Video features and video tokens do not match: tokens: {n_video_tokens}, features: {n_video_features}"
                    )
                video_mask = (
                    (input_ids == self.config.video_token_id)
                    .unsqueeze(-1)
                    .expand_as(inputs_embeds)
                    .to(inputs_embeds.device)
                )
                video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
                inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)

            if attention_mask is not None:
                attention_mask = attention_mask.to(inputs_embeds.device)

        # RoPE positions / deltas
        if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
            if (
                (cache_position is not None and cache_position[0] == 0)
                or self.rope_deltas is None
                or (past_key_values is None or past_key_values.get_seq_length() == 0)
            ):
                position_ids, rope_deltas = self.get_rope_index(input_ids, image_grid_thw, video_grid_thw, attention_mask)
                self.rope_deltas = rope_deltas
            else:
                batch_size, seq_length, _ = inputs_embeds.shape
                delta = cache_position[0] + self.rope_deltas if cache_position is not None else 0
                position_ids = torch.arange(seq_length, device=inputs_embeds.device)
                position_ids = position_ids.view(1, -1).expand(batch_size, -1)
                if cache_position is not None:
                    delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0).to(position_ids.device)
                position_ids = position_ids.add(delta)
                position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)

        outputs = self.model(
            input_ids=None,
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]  # (batch, seq_len, d_model)
        logits = self.lm_head(hidden_states)

        lm_loss = None
        if labels is not None and self.lm_loss_weight > 0:
            logits = logits.float()
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1).to(shift_logits.device)
            lm_loss = loss_fct(shift_logits, shift_labels)

        pointer_loss = None
        pointer_scores = []
        if visual_token_indices_of_coordinates is not None:
            batch_size = input_ids.shape[0]
            pointer_losses = []

            for i in range(batch_size):
                dummy_target = False

                token_ids = input_ids[i]      # (seq_len,)
                hs = hidden_states[i]         # (seq_len, d_model)

                visual_mask = (token_ids == self.config.image_token_id)
                visual_indices = torch.nonzero(visual_mask, as_tuple=False).squeeze(-1)  # (n_visual,)

                target_mask = (token_ids == self.config.pointer_pad_token_id)
                target_indices = torch.nonzero(target_mask, as_tuple=False).squeeze(-1)

                if visual_indices.numel() == 0:
                    raise ValueError(f"No visual tokens found for sample {i}.")

                if target_indices.numel() == 0:
                    target_indices = torch.tensor([hs.shape[0] - 1], device=hs.device)
                    gt = torch.tensor([0], device=hs.device)  # not used in multi-patch
                    if if_multi_patch:
                        sample_labels = torch.zeros_like(visual_indices).unsqueeze(0)
                        sample_labels[0][:4] = 1
                    dummy_target = True
                else:
                    gt = visual_token_indices_of_coordinates[i].to(hs.device)  # (n_target,)
                    if if_multi_patch:
                        sample_labels = multi_patch_labels[i]

                # Use input embeddings for visual tokens (image tokens got replaced earlier)
                visual_embeds = inputs_embeds[i][visual_indices]  # (n_visual, d_model)
                target_hidden = hs[target_indices]                # (n_target, d_model)

                if if_multi_patch:
                    if sample_labels.shape[0] != target_indices.shape[0]:
                        raise ValueError(
                            f"Sample {i} mismatched targets: {sample_labels.shape[0]} labels vs {target_indices.shape[0]} targets"
                        )
                    attn_scores, loss_v = self.multi_patch_pointer_head(
                        visual_embeds,
                        target_hidden,
                        labels=sample_labels,
                    )
                else:
                    # Deprecated: single-patch branch
                    attn_scores, loss_v = self.pointer_head(visual_embeds, target_hidden, labels=gt)

                pointer_scores.append(attn_scores.detach().cpu())
                pointer_losses.append(loss_v * 0.0 if dummy_target else loss_v)

            pointer_loss = torch.stack(pointer_losses).mean()

        if lm_loss is None:
            total_loss = pointer_loss
        elif pointer_loss is None:
            total_loss = lm_loss
        else:
            total_loss = self.lm_loss_weight * lm_loss + self.pointer_loss_weight * pointer_loss

        if return_dict:
            return QwenVLwithVisionHeadOutputWithPast(
                lm_loss=lm_loss,
                pointer_loss=pointer_loss,
                pointer_scores=pointer_scores,
                loss=total_loss,
                logits=logits,
                past_key_values=outputs.past_key_values,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
                rope_deltas=self.rope_deltas,
            )
        else:
            if labels is not None:
                output = (lm_loss, pointer_loss, logits, pointer_scores,) + outputs[1:]
                return (total_loss,) + output if total_loss is not None else output
            else:
                return outputs