File size: 7,221 Bytes
9f57ecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import base64, os
# import spaces
import json
import torch
import gradio as gr
from typing import Optional
from PIL import Image, ImageDraw
import numpy as np
import matplotlib.pyplot as plt
from qwen_vl_utils import process_vision_info
from datasets import load_dataset
from transformers import AutoProcessor
from gui_actor.constants import chat_template
from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer
from gui_actor.inference import inference
MAX_PIXELS = 3200 * 1800
def resize_image(image, resize_to_pixels=MAX_PIXELS):
image_width, image_height = image.size
if (resize_to_pixels is not None) and ((image_width * image_height) != resize_to_pixels):
resize_ratio = (resize_to_pixels / (image_width * image_height)) ** 0.5
image_width_resized, image_height_resized = int(image_width * resize_ratio), int(image_height * resize_ratio)
image = image.resize((image_width_resized, image_height_resized))
return image
# @spaces.GPU
@torch.inference_mode()
def draw_point(image: Image.Image, point: list, radius=8, color=(255, 0, 0, 128)):
overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
overlay_draw = ImageDraw.Draw(overlay)
x, y = point
overlay_draw.ellipse(
[(x - radius, y - radius), (x + radius, y + radius)],
outline=color,
width=5 # Adjust thickness as needed
)
image = image.convert('RGBA')
combined = Image.alpha_composite(image, overlay)
combined = combined.convert('RGB')
return combined
# @spaces.GPU
@torch.inference_mode()
def get_attn_map(image, attn_scores, n_width, n_height):
w, h = image.size
scores = np.array(attn_scores[0]).reshape(n_height, n_width)
scores_norm = (scores - scores.min()) / (scores.max() - scores.min())
# Resize score map to match image size
score_map = Image.fromarray((scores_norm * 255).astype(np.uint8)).resize((w, h), resample=Image.NEAREST) # BILINEAR)
# Apply colormap
colormap = plt.get_cmap('jet')
colored_score_map = colormap(np.array(score_map) / 255.0) # returns RGBA
colored_score_map = (colored_score_map[:, :, :3] * 255).astype(np.uint8)
colored_overlay = Image.fromarray(colored_score_map)
# Blend with original image
blended = Image.blend(image, colored_overlay, alpha=0.3)
return blended
# load model
if torch.cuda.is_available():
# os.system('pip install flash-attn --no-build-isolation')
model_name_or_path = "microsoft/GUI-Actor-7B-Qwen2.5-VL"
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
tokenizer = data_processor.tokenizer
model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="cuda:0",
attn_implementation="flash_attention_2"
).eval()
else:
model_name_or_path = "microsoft/GUI-Actor-3B-Qwen2.5-VL"
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
tokenizer = data_processor.tokenizer
model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="cpu"
).eval()
title = "GUI-Actor"
header = """
<div align="center">
<h1 style="padding-bottom: 10px; padding-top: 10px;">π― <strong>GUI-Actor</strong>: Coordinate-Free Visual Grounding for GUI Agents</h1>
<div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
Qianhui Wu*, Kanzhi Cheng*, Rui Yang*, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu, Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden<br>
Qingwei Lin, Huan Zhang, Tong Zhang, Jianbing Zhang, Dongmei Zhang, Jianfeng Gao<br/>
</div>
<div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
<a href="https://microsoft.github.io/GUI-Actor/">π Project Page</a> | <a href="https://arxiv.org/abs/2403.12968">π arXiv Paper</a> | <a href="https://github.com/microsoft/GUI-Actor">π» Github Repo</a><br/>
</div>
</div>
"""
theme = "soft"
css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;}
#anno-img .mask.active {opacity: 0.7}"""
# @spaces.GPU
@torch.inference_mode()
def process(image, instruction):
# resize image
w, h = image.size
if w * h > MAX_PIXELS:
image = resize_image(image)
conversation = [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a GUI agent. Given a screenshot of the current GUI and a human instruction, your task is to locate the screen element that corresponds to the instruction. You should output a PyAutoGUI action that performs a click on the correct position. To indicate the click location, we will use some special tokens, which is used to refer to a visual patch later. For example, you can output: pyautogui.click(<your_special_token_here>).",
}
]
},
{
"role": "user",
"content": [
{
"type": "image",
"image": image, # PIL.Image.Image or str to path
# "image_url": "https://xxxxx.png" or "https://xxxxx.jpg" or "file://xxxxx.png" or "", will be split by "base64,"
},
{
"type": "text",
"text": instruction,
},
],
},
]
try:
pred = inference(conversation, model, tokenizer, data_processor, use_placeholder=True, topk=3)
except Exception as e:
print(e)
return image, f"Error: {e}", None
px, py = pred["topk_points"][0]
output_coord = f"({px:.4f}, {py:.4f})"
img_with_point = draw_point(image, (px * w, py * h))
n_width, n_height = pred["n_width"], pred["n_height"]
attn_scores = pred["attn_scores"]
att_map = get_attn_map(image, attn_scores, n_width, n_height)
return img_with_point, output_coord, att_map
with gr.Blocks(title=title, css=css) as demo:
gr.Markdown(header)
with gr.Row():
with gr.Column():
input_image = gr.Image(
type='pil', label='Upload image')
# text box
input_instruction = gr.Textbox(label='Instruction', placeholder='Text your (low-level) instruction here')
submit_button = gr.Button(
value='Submit', variant='primary')
with gr.Column():
image_with_point = gr.Image(type='pil', label='Image with Point (red circle)')
with gr.Accordion('Detailed prediction'):
pred_xy = gr.Textbox(label='Predicted Coordinates', placeholder='(x, y)')
att_map = gr.Image(type='pil', label='Attention Map')
submit_button.click(
fn=process,
inputs=[
input_image,
input_instruction
],
outputs=[image_with_point, pred_xy, att_map]
)
# demo.launch(debug=False, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
demo.queue().launch(share=False) |