File size: 7,221 Bytes
9f57ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import base64, os
# import spaces
import json
import torch
import gradio as gr
from typing import Optional
from PIL import Image, ImageDraw
import numpy as np
import matplotlib.pyplot as plt
from qwen_vl_utils import process_vision_info
from datasets import load_dataset
from transformers import AutoProcessor
from gui_actor.constants import chat_template
from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer
from gui_actor.inference import inference

MAX_PIXELS = 3200 * 1800

def resize_image(image, resize_to_pixels=MAX_PIXELS):
    image_width, image_height = image.size
    if (resize_to_pixels is not None) and ((image_width * image_height) != resize_to_pixels):
        resize_ratio = (resize_to_pixels / (image_width * image_height)) ** 0.5
        image_width_resized, image_height_resized = int(image_width * resize_ratio), int(image_height * resize_ratio)
        image = image.resize((image_width_resized, image_height_resized))
    return image

# @spaces.GPU
@torch.inference_mode()
def draw_point(image: Image.Image, point: list, radius=8, color=(255, 0, 0, 128)):
    overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
    overlay_draw = ImageDraw.Draw(overlay)
    x, y = point
    overlay_draw.ellipse(
        [(x - radius, y - radius), (x + radius, y + radius)],
        outline=color,
        width=5  # Adjust thickness as needed
    )
    image = image.convert('RGBA')
    combined = Image.alpha_composite(image, overlay)
    combined = combined.convert('RGB')
    return combined

# @spaces.GPU
@torch.inference_mode()
def get_attn_map(image, attn_scores, n_width, n_height):
    w, h = image.size
    scores = np.array(attn_scores[0]).reshape(n_height, n_width)

    scores_norm = (scores - scores.min()) / (scores.max() - scores.min())
    # Resize score map to match image size
    score_map = Image.fromarray((scores_norm * 255).astype(np.uint8)).resize((w, h), resample=Image.NEAREST) # BILINEAR)
    # Apply colormap
    colormap = plt.get_cmap('jet')
    colored_score_map = colormap(np.array(score_map) / 255.0)  # returns RGBA
    colored_score_map = (colored_score_map[:, :, :3] * 255).astype(np.uint8)
    colored_overlay = Image.fromarray(colored_score_map)

    # Blend with original image
    blended = Image.blend(image, colored_overlay, alpha=0.3)
    return blended

# load model
if torch.cuda.is_available():
    # os.system('pip install flash-attn --no-build-isolation')
    model_name_or_path = "microsoft/GUI-Actor-7B-Qwen2.5-VL"
    data_processor = AutoProcessor.from_pretrained(model_name_or_path)
    tokenizer = data_processor.tokenizer
    model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
        model_name_or_path,
        torch_dtype=torch.bfloat16,
        device_map="cuda:0",
        attn_implementation="flash_attention_2"
    ).eval()
else:
    model_name_or_path = "microsoft/GUI-Actor-3B-Qwen2.5-VL"
    data_processor = AutoProcessor.from_pretrained(model_name_or_path)
    tokenizer = data_processor.tokenizer
    model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
        model_name_or_path,
        torch_dtype=torch.bfloat16,
        device_map="cpu"
    ).eval()

title = "GUI-Actor"
header = """
<div align="center">
    <h1 style="padding-bottom: 10px; padding-top: 10px;">🎯 <strong>GUI-Actor</strong>: Coordinate-Free Visual Grounding for GUI Agents</h1>
    <div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
        Qianhui Wu*, Kanzhi Cheng*, Rui Yang*, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu, Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden<br>
        Qingwei Lin, Huan Zhang, Tong Zhang, Jianbing Zhang, Dongmei Zhang, Jianfeng Gao<br/>
    </div>
    <div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
        <a href="https://microsoft.github.io/GUI-Actor/">🌐 Project Page</a> | <a href="https://arxiv.org/abs/2403.12968">πŸ“„ arXiv Paper</a> | <a href="https://github.com/microsoft/GUI-Actor">πŸ’» Github Repo</a><br/>
    </div>
</div>
"""

theme = "soft"
css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;}
            #anno-img .mask.active {opacity: 0.7}"""

# @spaces.GPU
@torch.inference_mode()
def process(image, instruction):
    # resize image
    w, h = image.size
    if w * h > MAX_PIXELS:
        image = resize_image(image)

    conversation = [
        {
            "role": "system",
            "content": [
                {
                    "type": "text",
                    "text": "You are a GUI agent. Given a screenshot of the current GUI and a human instruction, your task is to locate the screen element that corresponds to the instruction. You should output a PyAutoGUI action that performs a click on the correct position. To indicate the click location, we will use some special tokens, which is used to refer to a visual patch later. For example, you can output: pyautogui.click(<your_special_token_here>).",
                }
            ]
        },
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": image, # PIL.Image.Image or str to path
                    # "image_url": "https://xxxxx.png" or "https://xxxxx.jpg" or "file://xxxxx.png" or "", will be split by "base64,"
                },
                {
                    "type": "text",
                    "text": instruction,
                },
            ],
        },
    ]

    try:
        pred = inference(conversation, model, tokenizer, data_processor, use_placeholder=True, topk=3)
    except Exception as e:
        print(e)
        return image, f"Error: {e}", None
    
    px, py = pred["topk_points"][0]
    output_coord = f"({px:.4f}, {py:.4f})"
    img_with_point = draw_point(image, (px * w, py * h))

    n_width, n_height = pred["n_width"], pred["n_height"]
    attn_scores = pred["attn_scores"]
    att_map = get_attn_map(image, attn_scores, n_width, n_height)
    
    return img_with_point, output_coord, att_map


with gr.Blocks(title=title, css=css) as demo:
    gr.Markdown(header)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                type='pil', label='Upload image')
            # text box
            input_instruction = gr.Textbox(label='Instruction', placeholder='Text your (low-level) instruction here')
            submit_button = gr.Button(
                value='Submit', variant='primary')
        with gr.Column():
            image_with_point = gr.Image(type='pil', label='Image with Point (red circle)')
            with gr.Accordion('Detailed prediction'):
                pred_xy = gr.Textbox(label='Predicted Coordinates', placeholder='(x, y)')
                att_map = gr.Image(type='pil', label='Attention Map')

    submit_button.click(
        fn=process,
        inputs=[
            input_image,
            input_instruction
        ],
        outputs=[image_with_point, pred_xy, att_map]
    )

# demo.launch(debug=False, show_error=True, share=True)
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
demo.queue().launch(share=False)