File size: 23,496 Bytes
9f57ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import copy
import json
import math
import os
import random
import re
import ast
from typing import Dict

import torch
import transformers
import yaml
from qwen_vl_utils import smart_resize, process_vision_info
from torch.utils.data import Dataset

from gui_actor.constants import (
    IGNORE_INDEX,
    DEFAULT_IMAGE_TOKEN,
    DEFAULT_POINTER_START_TOKEN,
    DEFAULT_POINTER_PAD_TOKEN,
    DEFAULT_POINTER_END_TOKEN,
    ACTION_PATTENS_XY,
    ADDITIONAL_SPECIAL_TOKENS,
    assistant_template,
    chat_template,
    grounding_system_message,
)
from gui_actor.trainer import rank0_print


def reformat_coordinates(text):
    """
    (1) Find all the coordinates in the text.
    (2) Replace the coordinates with the special tokens.
    (3) Return the new text and the coordinates as a list of (x, y), where x in [0, 1] and y in [0, 1].
    """
    epsilon = 0.001
    def adjust_coord(c):
        """
        Adjust coordinate if it is too close to 0 or 1.
        """
        if abs(c) < epsilon:
            return epsilon
        elif abs(c - 1) < epsilon:
            return 1 - epsilon
        return c

    all_matches = []
    for pattern in ACTION_PATTENS_XY:
        matches = list(re.finditer(pattern, text))
        for match in matches:
            all_matches.append((match.start(), match.groups()))
        if pattern == ACTION_PATTENS_XY[0]:
            target_text = f"{DEFAULT_POINTER_START_TOKEN}{DEFAULT_POINTER_PAD_TOKEN}{DEFAULT_POINTER_END_TOKEN}"
        else:
            target_text = f"{DEFAULT_POINTER_START_TOKEN}{DEFAULT_POINTER_PAD_TOKEN}{DEFAULT_POINTER_END_TOKEN}, {DEFAULT_POINTER_START_TOKEN}{DEFAULT_POINTER_PAD_TOKEN}{DEFAULT_POINTER_END_TOKEN}"
        text = re.sub(
            pattern,
            target_text,
            text
        )
    
    coordinates = []
    all_matches.sort(key=lambda x: x[0])
    # Extract coordinates in order
    for _, groups in all_matches:
        # When two coordinate values are found, parse them as one (x, y) pair.
        if len(groups) == 2:
            x_str, y_str = groups
            x = adjust_coord(ast.literal_eval(x_str))
            y = adjust_coord(ast.literal_eval(y_str))
            coordinates.append((x, y))
        # When four coordinate values are found, parse them as two pairs.
        elif len(groups) == 4:
            x1_str, y1_str, x2_str, y2_str = groups
            x1 = adjust_coord(ast.literal_eval(x1_str))
            y1 = adjust_coord(ast.literal_eval(y1_str))
            x2 = adjust_coord(ast.literal_eval(x2_str))
            y2 = adjust_coord(ast.literal_eval(y2_str))
            coordinates.append((x1, y1))
            coordinates.append((x2, y2))
    
    return text, coordinates

def get_token_index(image_processor, image, point_x, point_y):
    """
    Get the index of the visual token that contains the point (x, y).
    Args:
        image_processor: the image processor
        image: the image in PIL format
        point_x: the x coordinate of the point, in [0, 1].
        point_y: the y coordinate of the point, in [0, 1].
    """
    if len(image) != 1:
        raise ValueError(f"Expected 1 image, got {len(image)}")
    
    # get the original image size and the resized image size
    image = image[0]
    w, h = image.size
    px, py = w * point_x, h * point_y
    # rank0_print(f"px: {px}, py: {py}")
    # get the token index
    merge_patch_size = image_processor.patch_size * image_processor.merge_size
    x_index = math.floor(px / merge_patch_size)
    y_index = math.floor(py / merge_patch_size)
    
    visual_token_index = y_index * (w // merge_patch_size) + x_index

    # merge all above print into one line
    return visual_token_index

def get_multi_patch_labels(image_processor, image, bbox_gt):
    """
    Get the multi-patch labels for the bounding box.
    Args:
        image_processor: the image processor
        image: the image in PIL format
        bbox_gt: the bounding box in the format of (x_min, y_min, x_max, y_max) [0,1]
    """
    if len(image) != 1:
        raise ValueError(f"Expected 1 image, got {len(image)}")

    # Get the original image size and the resized image size
    image = image[0]
    w, h = image.size

    bbox_gt = [bbox_gt[0]*w, bbox_gt[1]*h, bbox_gt[2]*w, bbox_gt[3]*h]
    # Extract bounding box coordinates
    x_min, y_min, x_max, y_max = bbox_gt
    x_min = max(0, x_min)
    y_min = max(0, y_min)
    x_max = min(w, x_max)
    y_max = min(h, y_max)

    merge_patch_size = image_processor.patch_size * image_processor.merge_size
    assert w % merge_patch_size == 0 and h % merge_patch_size == 0, f"Image size {w}x{h} is not divisible by merge_patch_size {merge_patch_size}"
    grid_h, grid_w = h // merge_patch_size, w // merge_patch_size

    binary_mask = torch.zeros(grid_h * grid_w)
    # Iterate through all patches, check if they overlap with the bounding box
    for y_idx in range(grid_h):
        for x_idx in range(grid_w):
            # Calculate patch boundaries
            patch_x_min = x_idx * merge_patch_size
            patch_y_min = y_idx * merge_patch_size
            patch_x_max = patch_x_min + merge_patch_size
            patch_y_max = patch_y_min + merge_patch_size
            
            # Check if patch overlaps with the bounding box
            if not (patch_x_max <= x_min or patch_x_min >= x_max or 
                    patch_y_max <= y_min or patch_y_min >= y_max):
                # Calculate patch index in the flattened grid
                patch_idx = y_idx * grid_w + x_idx
                binary_mask[patch_idx] = 1

    return binary_mask

def token_index_to_coordinates(image_processor, visual_token_index, image_width, image_height):
    merge_patch_size = image_processor.patch_size * image_processor.merge_size
    x_index = visual_token_index % (image_width // merge_patch_size)
    y_index = visual_token_index // (image_width // merge_patch_size)
    px = x_index * merge_patch_size + merge_patch_size / 2
    py = y_index * merge_patch_size + merge_patch_size / 2
    return px, py

class LazySupervisedDataset(Dataset):
    def __init__(
        self,
        tokenizer: transformers.PreTrainedTokenizer,
        processor: transformers.ProcessorMixin,
        data_path: str,
        data_args,
    ):
        super().__init__()
        self.tokenizer = tokenizer
        self.processor = processor
        self.list_data_dict = []
        self.list_image_path = []
        self.pointer_pad_token_id = tokenizer.encode(DEFAULT_POINTER_PAD_TOKEN)[0]
        self.pointer_start_token_id = tokenizer.encode(DEFAULT_POINTER_START_TOKEN)[0]
        self.pointer_end_token_id = tokenizer.encode(DEFAULT_POINTER_END_TOKEN)[0]

        # Handle multiple JSON files specified in the data_path
        if "{" in data_path and "}" in data_path:
            base_path, file_pattern = re.match(r"^(.*)\{(.*)\}\.json$", data_path).groups()
            file_names = file_pattern.split(",")
            rank0_print(f"Loading {file_names} from {base_path}")
            data_args.dataset_paths = []
            for file_name in file_names:
                data_args.dataset_paths.append(f"{base_path}{file_name}.json")
                full_path = f"{base_path}{file_name}.json"
                rank0_print(f"Loading {full_path}")
                with open(full_path) as file:
                    cur_data_dict = json.load(file)
                    rank0_print(f"Loaded {len(cur_data_dict)} samples from {full_path}")
                    self.list_data_dict.extend(cur_data_dict)
        elif data_path.endswith(".yaml"):
            with open(data_path) as file:
                yaml_data = yaml.safe_load(file)
                datasets = yaml_data.get("datasets")
                # file should be in the format of:
                # datasets:
                #   - json_path: xxxx1.json
                #     sampling_strategy: first:1000
                #   - json_path: xxxx2.json
                #     sampling_strategy: end:3000
                #   - json_path: xxxx3.json
                #     sampling_strategy: random:999
                data_args.dataset_paths = [dataset.get("json_path") for dataset in datasets]
                for dataset in datasets:
                    json_path = dataset.get("json_path")
                    sampling_strategy = dataset.get("sampling_strategy", "all")
                    images_folder = dataset.get("images_folder")
                    sampling_number = None

                    rank0_print(f"Loading {json_path} with {sampling_strategy} sampling strategy")

                    if json_path.endswith(".jsonl"):
                        cur_data_dict = []
                        with open(json_path) as json_file:
                            for line in json_file:
                                cur_data_dict.append(json.loads(line.strip()))
                    elif json_path.endswith(".json"):
                        # NOTE: we only use json_path with .json now
                        # Handle the images_folder in yaml
                        with open(json_path) as json_file:
                            cur_data_dict = json.load(json_file)
                    else:
                        raise ValueError(f"Unsupported file type: {json_path}")

                    if ":" in sampling_strategy:
                        sampling_strategy, sampling_number = sampling_strategy.split(":")
                        if "%" in sampling_number:
                            sampling_number = math.ceil(int(sampling_number.split("%")[0]) * len(cur_data_dict) / 100)
                        else:
                            sampling_number = int(sampling_number)

                    # Apply the sampling strategy
                    if sampling_strategy == "first" and sampling_number is not None:
                        cur_data_dict = cur_data_dict[:sampling_number]
                    elif sampling_strategy == "end" and sampling_number is not None:
                        cur_data_dict = cur_data_dict[-sampling_number:]
                    elif sampling_strategy == "random" and sampling_number is not None:
                        random.shuffle(cur_data_dict)
                        cur_data_dict = cur_data_dict[:sampling_number]

                    rank0_print(f"Loaded {len(cur_data_dict)} samples from {json_path}")
                    self.list_data_dict.extend(cur_data_dict)
                    self.list_image_path.extend([images_folder] * len(cur_data_dict))
        else:
            data_args.dataset_paths = [data_path]
            rank0_print(f"Loading {data_path}")
            with open(data_path) as file:
                cur_data_dict = json.load(file)
                rank0_print(f"Loaded {len(cur_data_dict)} samples from {data_path}")
                self.list_data_dict.extend(cur_data_dict)
                self.list_image_path.extend([""] * len(cur_data_dict))  # NOTE: the image subfolder is empty...

        rank0_print(f"Loaded {len(self.list_data_dict)} samples from {data_path}")
        rank0_print("Formatting inputs...Skip in lazy mode")
        self.tokenizer = tokenizer
        self.data_args = data_args

    def __len__(self):
        return len(self.list_data_dict)

    @property
    def lengths(self):
        length_list = []
        for sample in self.list_data_dict:
            img_tokens = (
                1200 * len(sample["image"]) if isinstance(sample["image"], list) else 1200 if "image" in sample else 0
            )
            length_list.append(sum(len(conv["value"].split()) for conv in sample["conversations"]) + img_tokens)
        return length_list

    @property
    def modality_lengths(self):
        length_list = []
        for sample in self.list_data_dict:
            cur_len = sum(len(conv["value"].split()) for conv in sample["conversations"])
            assert cur_len > 0, f"Conversation length is 0 for {sample}"

            img_tokens = (
                1200 * len(sample["image"]) if isinstance(sample["image"], list) else 1200 if "image" in sample else 0
            )

            if "image" in sample or "video" in sample or self.data_args.early_mix_text:
                length_list.append(cur_len + img_tokens)
            else:
                length_list.append(-cur_len)
        return length_list

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        sample = self._get_item(i)
        if sample is None:
            new_index = random.randint(0, len(self.list_data_dict) - 1)
            return self.__getitem__(new_index)
        else:
            return sample
        try:
            sample = self._get_item(i)
            if sample is None:
                new_index = random.randint(0, len(self.list_data_dict) - 1)
                return self.__getitem__(new_index)
        except Exception as e:
            print(f"Failed to fetch sample {i}. Exception:", e)
            new_index = random.randint(0, len(self.list_data_dict) - 1)
            return self.__getitem__(new_index)
        return sample

    def _get_item(self, i) -> Dict[str, torch.Tensor]:
        sources = self.list_data_dict[i]
        image_path = os.path.join(self.data_args.image_folder, self.list_image_path[i])

        if "image" in sources:
            image_file = self.list_data_dict[i]["image"]
            if type(image_file) is list:
                image_list = [os.path.join(image_path, image_file) for image_file in image_file]
            else:
                image_list = [os.path.join(image_path, image_file)]

            sources = copy.deepcopy(sources["conversations"])
        elif "video" in sources:
            raise NotImplementedError("Video is not supported for Qwen2VL")
        else:
            sources = copy.deepcopy(sources["conversations"])

        item_id = self.list_data_dict[i].get("id", i)

        data_dict = self.preprocess_qwen2vl(sources, self.tokenizer, self.processor, image_list, id=item_id)
        if isinstance(i, int):
            data_dict = {
                "input_ids": data_dict["input_ids"][0],
                "labels": data_dict["labels"][0],
                "coordinates": data_dict["coordinates"][0],
                "visual_token_indices_of_coordinates": data_dict["visual_token_indices_of_coordinates"][0],
                "pixel_values": data_dict["pixel_values"],
                "image_grid_thw": data_dict["image_grid_thw"],
                "multi_patch_labels": data_dict["multi_patch_labels"][0],   # add multi_patch_labels                
            }

        data_dict["id"] = item_id

        # return None if the input_ids is longer than the model_max_length
        n_image_tokens = (
            data_dict["image_grid_thw"][0][0] * 
            data_dict["image_grid_thw"][0][1] * 
            data_dict["image_grid_thw"][0][2] / 
            self.processor.image_processor.merge_size / 
            self.processor.image_processor.merge_size
        )
        if (len(data_dict["input_ids"]) + n_image_tokens) > self.tokenizer.model_max_length:
            rank0_print(f"=== Removed data_dict {i} because it is longer than the model_max_length: {len(data_dict['input_ids'])} + {n_image_tokens} > {self.tokenizer.model_max_length}")
            return None

        return data_dict

    def preprocess_qwen2vl(
        self,
        source, # conversations
        tokenizer: transformers.PreTrainedTokenizer,
        processor: transformers.ProcessorMixin,
        image: list,
        system_message: str = grounding_system_message,
        agent_mode: bool = True,
        chat_template: str = chat_template,
        assistant_template: str = assistant_template,
        id: int = None,
    ) -> Dict:
        roles = {"human": "user", "gpt": "assistant", "system": "system"}
        assistant_template = assistant_template if agent_mode else chat_template
        processor.tokenizer = tokenizer
        assert tokenizer.additional_special_tokens == ADDITIONAL_SPECIAL_TOKENS

        # Apply prompt templates
        pixel_values, image_grid_thw = None, None

        input_id, target = [], []
        coordinates = []
        visual_token_indices_of_coordinates = []
        multi_patch_labels = []
        
        image_list = []
        image_index = 0

        ## prepare the system message
        if roles[source[0]["from"]] == "system":
            system_message = source[0]["value"]
            source = source[1:self.data_args.max_conv_turns]
        # else: use the constant system message
        system_input_id = tokenizer.apply_chat_template(
            conversation=[{"role": "system", "content": [{"type": "text", "text": system_message}]}],
            chat_template=chat_template,
        )
        input_id += system_input_id
        target += [IGNORE_INDEX] * len(system_input_id)

        ## prepare user-assistant conversation
        for conv in source:
            # regularize the conversation format
            try:
                role = conv["role"]
                content = conv["content"]
            except Exception:
                role = conv["from"]
                content = conv["value"]
            role = roles.get(role, role)

            # Count the number of <image> tokens in the content
            image_count = content.count(DEFAULT_IMAGE_TOKEN)
            if image_count > 0:
                assert role == "user", "Images are only supported for user messages"
                # include image information regarding to current conversation turn
                image_placeholders = []
                for _ in range(image_count):
                    image_placeholders.append({
                        "type": "image",
                        "image": image[image_index],
                        "min_pixels": self.processor.image_processor.min_pixels,
                        "max_pixels": self.processor.image_processor.max_pixels,
                    })
                    image_index += 1

                content = content.replace(DEFAULT_IMAGE_TOKEN, "")
                conv = {"role": role, "content": image_placeholders + [{"type": "text", "text": content}]}

                image_inputs, _ = process_vision_info([conv]) # list of PIL.Image.Image
                image_list.extend(image_inputs)
                
                templated_conv = tokenizer.apply_chat_template(
                    conversation=[conv], chat_template=chat_template, tokenize=False
                )
                inputs = processor(text=[templated_conv], images=image_inputs, return_tensors="pt")

                if pixel_values is None and image_grid_thw is None:
                    pixel_values = inputs["pixel_values"]
                    image_grid_thw = inputs["image_grid_thw"]
                else:
                    pixel_values = torch.concat([pixel_values, inputs["pixel_values"]], dim=0)
                    image_grid_thw = torch.concat([image_grid_thw, inputs["image_grid_thw"]], dim=0)
            else:
                if role in ["user", "system"]:
                    conv = {"role": role, "content": [{"type": "text", "text": content}]}
                else:  # assistant
                    conv = {
                        "role": role,
                        "content": [{"type": "text", "text": content}],
                        "recipient": conv.get("recipient", "os"),
                        "end_turn": conv.get("end_turn", True),
                        "bbox_gt": conv.get("bbox_gt", None),
                    }
                    if conv["recipient"] == "os":
                        if len(image_inputs) == 0:
                            raise ValueError("No image found for visual grounding")
                        # replace the coordinates with the special tokens
                        text, coord = reformat_coordinates(conv["content"][0]["text"])
                        conv["content"][0]["text"] = text
                        # rank0_print(f"coord: {coord}")

                        # get the visual token indices of the coordinates
                        coordinates.extend(coord)
                        for (point_x, point_y) in coord:
                            visual_token_index = get_token_index(
                                processor.image_processor,
                                image_list,
                                point_x,
                                point_y
                            )
                            # px, py = token_index_to_coordinates(
                            #     processor.image_processor,
                            #     visual_token_index,
                            #     image_list[0].size[0], # make sure the size here is after qwen2vl processing
                            #     image_list[0].size[1]
                            # )
                            # rank0_print(f"estimated px: {px}, py: {py}")
                            visual_token_indices_of_coordinates.append(visual_token_index)

                            if conv["bbox_gt"] is not None:
                                patch_mask = get_multi_patch_labels(
                                    processor.image_processor,
                                    image_list,
                                    conv["bbox_gt"]
                                )  
                                multi_patch_labels.append(patch_mask)

                templated_conv = tokenizer.apply_chat_template(
                    conversation=[conv],
                    chat_template=assistant_template,
                    tokenize=False,
                )
                inputs = processor(text=[templated_conv], return_tensors="pt")

            encode_id = inputs.input_ids[0].tolist()

            input_id += encode_id
            if role in ["user", "system"]:
                target += [IGNORE_INDEX] * len(encode_id)
            else:
                target += encode_id

        assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}"

        # make the labels of all pointer_end_token_id to be IGNORE_INDEX
        target = [IGNORE_INDEX if token == self.pointer_end_token_id else token for token in target]

        input_ids = torch.tensor([input_id], dtype=torch.long)
        targets = torch.tensor([target], dtype=torch.long)
        visual_token_indices_of_coordinates = torch.tensor([visual_token_indices_of_coordinates], dtype=torch.long) if len(visual_token_indices_of_coordinates) > 0 else [None]
        coordinates = [coordinates] if len(coordinates) > 0 else [None]

        # process multi_patch_labels
        if len(multi_patch_labels) > 0:
            multi_patch_labels = [torch.stack(multi_patch_labels)]
        else:
            multi_patch_labels = [None]

        data_dict = {
            "input_ids": input_ids,  # tensor(bs x seq_len)
            "labels": targets,  # tensor(bs x seq_len)
        }

        if pixel_values is not None:
            data_dict["pixel_values"] = pixel_values
            data_dict["image_grid_thw"] = image_grid_thw
        
        # if len(coordinates[0]) != len(visual_token_indices_of_coordinates[0]):
        #     raise ValueError(f"The number of coordinates ({len(coordinates[0])}) does not match the number of image token indices ({len(visual_token_indices_of_coordinates[0])})")
        data_dict["coordinates"] = coordinates
        data_dict["visual_token_indices_of_coordinates"] = visual_token_indices_of_coordinates
        data_dict["multi_patch_labels"] = multi_patch_labels
        
        return data_dict