GUI-Actor / app.py
Mungert's picture
Update app.py
3952f1b verified
import base64, os, json
from typing import Optional
import torch
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw
# ---- Hugging Face Spaces GPU decorator (safe fallback when not on Spaces) ----
try:
import spaces
GPU_DECORATOR = spaces.GPU
except Exception:
def GPU_DECORATOR(fn): # no-op locally
return fn
from qwen_vl_utils import process_vision_info # noqa: F401 (kept for parity if used elsewhere)
from datasets import load_dataset # noqa: F401
from transformers import AutoProcessor
from gui_actor.constants import chat_template # noqa: F401
from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer
from gui_actor.inference import inference
MAX_PIXELS = 3200 * 1800
def resize_image(image, resize_to_pixels=MAX_PIXELS):
image_width, image_height = image.size
if (resize_to_pixels is not None) and ((image_width * image_height) != resize_to_pixels):
resize_ratio = (resize_to_pixels / (image_width * image_height)) ** 0.5
image_width_resized, image_height_resized = int(image_width * resize_ratio), int(image_height * resize_ratio)
image = image.resize((image_width_resized, image_height_resized))
return image
@torch.inference_mode()
def draw_point(image: Image.Image, point: list, radius=8, color=(255, 0, 0, 128)):
overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
overlay_draw = ImageDraw.Draw(overlay)
x, y = point
overlay_draw.ellipse(
[(x - radius, y - radius), (x + radius, y + radius)],
outline=color,
width=5
)
image = image.convert('RGBA')
combined = Image.alpha_composite(image, overlay)
combined = combined.convert('RGB')
return combined
@torch.inference_mode()
def get_attn_map(image, attn_scores, n_width, n_height):
w, h = image.size
scores = np.array(attn_scores[0]).reshape(n_height, n_width)
scores_norm = (scores - scores.min()) / (scores.max() - scores.min() + 1e-8)
score_map = Image.fromarray((scores_norm * 255).astype(np.uint8)).resize((w, h), resample=Image.NEAREST)
colormap = plt.get_cmap('jet')
colored_score_map = colormap(np.array(score_map) / 255.0)[:, :, :3]
colored_overlay = Image.fromarray((colored_score_map * 255).astype(np.uint8))
blended = Image.blend(image, colored_overlay, alpha=0.3)
return blended
# ----------------------------
# Model/device init for Spaces
# ----------------------------
def _pick_gpu_dtype() -> torch.dtype:
if not torch.cuda.is_available():
return torch.float32
major, minor = torch.cuda.get_device_capability()
# Ampere (8.x) / Hopper (9.x) support bf16 well
return torch.bfloat16 if major >= 8 else torch.float16
# Global holders initialized in load_model()
model = None
tokenizer = None
data_processor = None
@GPU_DECORATOR # <-- This is what Spaces looks for at startup
def load_model():
"""
Allocates the GPU on Spaces and loads the model on the right device/dtype.
Runs once at startup.
"""
global model, tokenizer, data_processor
model_name_or_path = "microsoft/GUI-Actor-3B-Qwen2.5-VL"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
dtype = _pick_gpu_dtype()
# Enable some healthy defaults on GPU
if device.startswith("cuda"):
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_grad_enabled(False)
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
tokenizer = data_processor.tokenizer
# Use SDPA attention to avoid flash-attn dependency
attn_impl = "sdpa"
model_local = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
model_name_or_path,
torch_dtype=dtype,
attn_implementation=attn_impl,
).eval()
# Move to device explicitly (avoid accelerate unless you need sharding)
model_local.to(device)
model = model_local
return f"Loaded {model_name_or_path} on {device} with dtype={dtype} (attn={attn_impl})"
# Trigger model loading on import so Spaces allocates GPU immediately
_ = load_model()
@GPU_DECORATOR
@torch.inference_mode()
def process(image, instruction):
# Safety: ensure model is loaded
if model is None:
_ = load_model()
# Resize if needed
w, h = image.size
if w * h > MAX_PIXELS:
image = resize_image(image)
w, h = image.size
conversation = [
{
"role": "system",
"content": [
{
"type": "text",
"text": (
"You are a GUI agent. Given a screenshot of the current GUI and a human instruction, "
"your task is to locate the screen element that corresponds to the instruction. "
"Output a PyAutoGUI action with a special token that points to the correct location."
),
}
],
},
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": instruction},
],
},
]
device = next(model.parameters()).device
try:
pred = inference(
conversation,
model,
tokenizer,
data_processor,
use_placeholder=True,
topk=3
)
except Exception as e:
print("inference error:", e)
return image, f"Error: {e}", None
px, py = pred["topk_points"][0]
output_coord = f"({px:.4f}, {py:.4f})"
img_with_point = draw_point(image, (px * w, py * h))
n_width, n_height = pred["n_width"], pred["n_height"]
attn_scores = pred["attn_scores"]
att_map = get_attn_map(image, attn_scores, n_width, n_height)
return img_with_point, output_coord, att_map
# ----------------------------
# Gradio UI
# ----------------------------
title = "GUI-Actor"
header = """
<div align="center">
<h1 style="padding-bottom: 10px; padding-top: 10px;">🎯 <strong>GUI-Actor</strong>: Coordinate-Free Visual Grounding for GUI Agents</h1>
<div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
<a href="https://microsoft.github.io/GUI-Actor/">🌐 Project Page</a> | <a href="https://arxiv.org/abs/2403.12968">πŸ“„ arXiv Paper</a> | <a href="https://github.com/microsoft/GUI-Actor">πŸ’» Github Repo</a><br/>
</div>
</div>
"""
theme = "soft"
css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;}
#anno-img .mask.active {opacity: 0.7}"""
with gr.Blocks(title=title, css=css, theme=theme) as demo:
gr.Markdown(header)
with gr.Row():
with gr.Column():
input_image = gr.Image(type='pil', label='Upload image')
input_instruction = gr.Textbox(label='Instruction', placeholder='Type your (low-level) instruction here')
submit_button = gr.Button(value='Submit', variant='primary')
with gr.Column():
image_with_point = gr.Image(type='pil', label='Image with Point (red circle)')
with gr.Accordion('Detailed prediction'):
pred_xy = gr.Textbox(label='Predicted Coordinates', placeholder='(x, y)')
att_map = gr.Image(type='pil', label='Attention Map')
submit_button.click(
fn=process,
inputs=[input_image, input_instruction],
outputs=[image_with_point, pred_xy, att_map],
queue=True,
api_name="predict",
)
# Version-agnostic Gradio startup (works across 3.x/4.x/5.x)
# Try newer/older signatures, fall back gracefully.
# Queue (GPU scheduling needed on Spaces)
try:
demo.queue(concurrency_count=1, max_size=4)
except TypeError:
try:
demo.queue(max_size=4)
except TypeError:
demo.queue()
# Launch
try:
demo.launch(share=False, max_threads=1, max_queue_size=4)
except TypeError:
try:
demo.launch(share=False, max_queue_size=4)
except TypeError:
demo.launch(share=False)