|
import torch |
|
import json |
|
import re |
|
import os |
|
from qwen_vl_utils import process_vision_info |
|
from transformers import ( |
|
Qwen2VLForConditionalGeneration, |
|
LogitsProcessor, |
|
LogitsProcessorList, |
|
AutoModelForCausalLM, |
|
AutoTokenizer |
|
) |
|
from gui_actor.constants import ( |
|
DEFAULT_POINTER_END_TOKEN, |
|
DEFAULT_POINTER_PAD_TOKEN, |
|
chat_template |
|
) |
|
|
|
class ForceFollowTokensLogitsProcessor(LogitsProcessor): |
|
""" |
|
Forces tokens B (pointer_pad_token) and C (pointer_end_token) to follow token A (pointer_start_token). |
|
Whenever token_a_id is generated, enqueue the forced_sequence (e.g. [B, C]). |
|
As long as forced tokens remain in the queue, force them in the output. |
|
""" |
|
def __init__(self, token_a_id, forced_sequence=[DEFAULT_POINTER_PAD_TOKEN, DEFAULT_POINTER_END_TOKEN]): |
|
super().__init__() |
|
self.token_a_id = token_a_id |
|
self.forced_sequence = forced_sequence |
|
self.force_queue = [] |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
""" |
|
Called at each decoding step to modify `scores`. |
|
|
|
Args: |
|
input_ids: shape (batch_size, seq_len). The already-decoded tokens. |
|
scores: shape (batch_size, vocab_size). Model logits for the next token. |
|
""" |
|
batch_size = input_ids.shape[0] |
|
if batch_size > 1: |
|
raise NotImplementedError("Batch size must be 1 for this logits processor.") |
|
|
|
|
|
|
|
last_token_id = input_ids[0, -1].item() |
|
|
|
|
|
if last_token_id == self.token_a_id: |
|
self.force_queue.extend(self.forced_sequence) |
|
|
|
|
|
if len(self.force_queue) > 0: |
|
forced_token = self.force_queue.pop(0) |
|
|
|
new_scores = torch.full_like(scores, float('-inf')) |
|
new_scores[0, forced_token] = 0.0 |
|
return new_scores |
|
|
|
|
|
return scores |
|
|
|
|
|
def get_prediction_region_point(attn_scores, n_width, n_height, top_n=30, activation_threshold=0.3, return_all_regions=True, rect_center=False): |
|
""" |
|
1. Select activated patches |
|
2. Divide connected patches into different regions |
|
3. Calculate the average activation value for each region |
|
4. Select the region with the highest average activation value |
|
5. Return the center point of that region as the final prediction point |
|
""" |
|
|
|
|
|
|
|
max_score = attn_scores[0].max().item() |
|
threshold = max_score * activation_threshold |
|
|
|
mask = attn_scores[0] > threshold |
|
valid_indices = torch.nonzero(mask).squeeze(-1) |
|
topk_values = attn_scores[0][valid_indices] |
|
topk_indices = valid_indices |
|
|
|
|
|
topk_coords = [] |
|
for idx in topk_indices.tolist(): |
|
y = idx // n_width |
|
x = idx % n_width |
|
topk_coords.append((y, x, idx)) |
|
|
|
|
|
regions = [] |
|
visited = set() |
|
for i, (y, x, idx) in enumerate(topk_coords): |
|
if idx in visited: |
|
continue |
|
|
|
|
|
region = [(y, x, idx, topk_values[i].item())] |
|
visited.add(idx) |
|
queue = [(y, x, idx, topk_values[i].item())] |
|
|
|
|
|
while queue: |
|
cy, cx, c_idx, c_val = queue.pop(0) |
|
|
|
|
|
for dy, dx in [(-1, 0), (1, 0), (0, -1), (0, 1)]: |
|
ny, nx = cy + dy, cx + dx |
|
n_idx = ny * n_width + nx |
|
|
|
|
|
for j, (ty, tx, t_idx) in enumerate(topk_coords): |
|
if ty == ny and tx == nx and t_idx not in visited: |
|
visited.add(t_idx) |
|
region.append((ny, nx, t_idx, topk_values[j].item())) |
|
queue.append((ny, nx, t_idx, topk_values[j].item())) |
|
|
|
regions.append(region) |
|
|
|
|
|
region_scores = [] |
|
region_centers = [] |
|
region_points = [] |
|
|
|
for region in regions: |
|
|
|
avg_score = sum(item[3] for item in region) / len(region) |
|
region_scores.append(avg_score) |
|
|
|
|
|
normalized_centers = [] |
|
weights = [] |
|
y_coords = set() |
|
x_coords = set() |
|
|
|
for y, x, _, score in region: |
|
|
|
center_y = (y + 0.5) / n_height |
|
center_x = (x + 0.5) / n_width |
|
normalized_centers.append((center_x, center_y)) |
|
weights.append(score) |
|
|
|
y_coords.add(center_y) |
|
x_coords.add(center_x) |
|
|
|
region_points.append(normalized_centers) |
|
|
|
|
|
if not rect_center: |
|
|
|
total_weight = sum(weights) |
|
weighted_x = sum(nc[0] * w for nc, w in zip(normalized_centers, weights)) / total_weight |
|
weighted_y = sum(nc[1] * w for nc, w in zip(normalized_centers, weights)) / total_weight |
|
avg_center_x, avg_center_y = weighted_x, weighted_y |
|
|
|
|
|
|
|
else: |
|
avg_center_x = sum(x_coords) / len(x_coords) |
|
avg_center_y = sum(y_coords) / len(y_coords) |
|
region_centers.append((avg_center_x, avg_center_y)) |
|
|
|
|
|
sorted_indices = sorted(range(len(region_scores)), key=lambda i: region_scores[i], reverse=True) |
|
sorted_scores = [region_scores[i] for i in sorted_indices] |
|
sorted_centers = [region_centers[i] for i in sorted_indices] |
|
sorted_points = [region_points[i] for i in sorted_indices] |
|
best_point = sorted_centers[0] |
|
|
|
if return_all_regions: |
|
|
|
|
|
|
|
|
|
|
|
return best_point, sorted_centers, sorted_scores, sorted_points |
|
else: |
|
return best_point |
|
|
|
|
|
def inference(conversation, model, tokenizer, data_processor, logits_processor=None, use_placeholder=False, topk=5): |
|
""" |
|
conversation = [ |
|
{ |
|
"role": "system", |
|
"content": [ |
|
{ |
|
"type": "text", |
|
"text": grounding_system_message, |
|
} |
|
] |
|
}, |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": example["image"], # PIL.Image.Image or str to path |
|
# "image_url": "https://xxxxx.png" or "https://xxxxx.jpg" or "file://xxxxx.png" or "", will be split by "base64," |
|
}, |
|
{ |
|
"type": "text", |
|
"text": example["instruction"] |
|
}, |
|
], |
|
}, |
|
] |
|
""" |
|
if logits_processor is None: |
|
logits_processor = ForceFollowTokensLogitsProcessor( |
|
token_a_id=tokenizer.encode(DEFAULT_POINTER_PAD_TOKEN)[0], |
|
forced_sequence=[ |
|
tokenizer.encode(DEFAULT_POINTER_END_TOKEN)[0] |
|
] |
|
) |
|
|
|
assiatant_starter = "" if not use_placeholder else "<|im_start|>assistant<|recipient|>os\npyautogui.click(<|pointer_start|><|pointer_pad|><|pointer_end|>)" |
|
|
|
pred = { |
|
"output_text": None, |
|
"n_width": None, |
|
"n_height": None, |
|
"attn_scores": None, |
|
"topk_points": None, |
|
"topk_values": None, |
|
"topk_points_all": None, |
|
} |
|
|
|
|
|
text = data_processor.apply_chat_template(conversation, |
|
tokenize=False, |
|
add_generation_prompt=False, |
|
chat_template=chat_template |
|
) |
|
text += assiatant_starter |
|
|
|
|
|
image_inputs, video_inputs = process_vision_info(conversation) |
|
inputs = data_processor(text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt" |
|
) |
|
inputs = inputs.to(model.device) |
|
|
|
|
|
results = model.generate(**inputs, |
|
max_new_tokens=2048 if not use_placeholder else 1, |
|
logits_processor=LogitsProcessorList([logits_processor]), |
|
return_dict_in_generate=True, |
|
output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
input_ids = inputs["input_ids"][0] |
|
generated_ids = results.sequences[0][len(input_ids):] |
|
output_text = tokenizer.decode(generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False) |
|
pred["output_text"] = output_text |
|
|
|
|
|
if use_placeholder: |
|
pointer_pad_mask = (inputs["input_ids"][0] == model.config.pointer_pad_token_id) |
|
else: |
|
pointer_pad_mask = (generated_ids[:-1] == model.config.pointer_pad_token_id) |
|
|
|
|
|
if len(pointer_pad_mask) == 0: |
|
return pred |
|
|
|
|
|
if use_placeholder: |
|
decoder_hidden_states = results.hidden_states[0][-1][0] |
|
else: |
|
decoder_hidden_states = [step_hidden_states[-1][0] for step_hidden_states in results.hidden_states[1:]] |
|
decoder_hidden_states = torch.cat(decoder_hidden_states, dim=0) |
|
decoder_hidden_states = decoder_hidden_states[pointer_pad_mask] |
|
|
|
|
|
|
|
image_mask = (inputs["input_ids"][0] == tokenizer.encode("<|image_pad|>")[0]) |
|
image_embeds = results.hidden_states[0][0][0][image_mask] |
|
|
|
attn_scores, _ = model.multi_patch_pointer_head(image_embeds, decoder_hidden_states) |
|
pred["attn_scores"] = attn_scores.tolist() |
|
|
|
_, n_height, n_width = (inputs["image_grid_thw"][0] // model.visual.spatial_merge_size).tolist() |
|
pred["n_width"] = n_width |
|
pred["n_height"] = n_height |
|
|
|
|
|
best_point, region_points, region_scores, region_points_all = get_prediction_region_point(attn_scores, n_width, n_height, return_all_regions=True, rect_center=False) |
|
topk_points = region_points[:topk] if len(region_points) > topk else region_points |
|
topk_values = region_scores[:topk] if len(region_scores) > topk else region_scores |
|
topk_points_all = region_points_all[:topk] if len(region_points_all) > topk else region_points_all |
|
pred["topk_points"] = topk_points |
|
pred["topk_values"] = topk_values |
|
pred["topk_points_all"] = topk_points_all |
|
|
|
return pred |