GUI-Actor / gui_actor /modeling.py
johnbridges's picture
.
9f57ecf
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast, Qwen2VLForConditionalGeneration
from gui_actor.constants import IGNORE_INDEX
from typing import List, Tuple, Union, Optional
from gui_actor.trainer import rank0_print
class QwenVLwithVisionHeadOutputWithPast(Qwen2VLCausalLMOutputWithPast):
"""
Output class for Qwen2VL with pointer head, extending the base output class.
Args:
lm_loss (`torch.FloatTensor` of shape `(1,)`, *optional*):
Language modeling loss.
pointer_loss (`torch.FloatTensor` of shape `(1,)`, *optional*):
Vision pointer network loss.
pointer_scores (`List[torch.FloatTensor]`, *optional*):
Attention scores from the pointer network, one tensor per batch item.
loss (`torch.FloatTensor` of shape `(1,)`, *optional*):
Combined loss (weighted sum of lm_loss and pointer_loss).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores from the language modeling head.
past_key_values, hidden_states, attentions, rope_deltas:
Same as parent class.
"""
def __init__(self, lm_loss=None, pointer_loss=None, pointer_scores=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.lm_loss = lm_loss
self.pointer_loss = pointer_loss
self.pointer_scores = pointer_scores
class VisionHead_MultiPatch(nn.Module):
def __init__(self, d_model, projection_dim, num_attention_heads=8, dropout_rate=0.1):
super().__init__()
self.d_model = d_model
# Note: We omit additional normalization here because Qwen2VL
# already normalizes hidden states using RMSNorm.
self.projection_enc = nn.Sequential(
nn.Linear(d_model, projection_dim),
nn.GELU(),
nn.Linear(projection_dim, d_model)
)
self.projection_dec = nn.Sequential(
nn.Linear(d_model, projection_dim),
nn.GELU(),
nn.Linear(projection_dim, d_model)
)
# Add self-attention layer for visual features
self.self_attention = nn.MultiheadAttention(
embed_dim=d_model,
num_heads=num_attention_heads,
dropout=dropout_rate,
batch_first=True
)
# Layer normalization and residual connection
self.layer_norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout_rate)
def forward(self,
hidden_state_enc, # shape: [n_enc, d_model] where n_enc can vary with image size
hidden_state_dec, # shape: [n_dec, d_model] there can be multiple query in one sample
labels: Optional[torch.Tensor] = None, # shape: [n_dec, n_enc], binary mask of patches in bbox
do_single_patch: bool = False,
):
enc_input = hidden_state_enc.unsqueeze(0)
attn_output, _ = self.self_attention(
query=enc_input,
key=enc_input,
value=enc_input,
# attn_mask=attention_mask,
need_weights=False
)
# Residual connection and layer normalization
hidden_state_enc_ctx = self.layer_norm(enc_input + self.dropout(attn_output))
# Remove batch dimension
hidden_state_enc_ctx = hidden_state_enc_ctx.squeeze(0) # [n_enc, d_model]
# Apply the projection networks.
proj_enc = self.projection_enc(hidden_state_enc_ctx) # [n_enc, d_model]
proj_dec = self.projection_dec(hidden_state_dec) # [n_dec, d_model]
# Compute scaled dot-product attention scores.
# Scaling by sqrt(d_model) is critical regardless of variable n_enc.
scaling = self.d_model ** 0.5
patch_logits = torch.matmul(proj_dec, proj_enc.transpose(0, 1)) / scaling # [n_dec, n_enc]
# Softmax normalization is applied along the encoder dimension.
attn_weights = F.softmax(patch_logits, dim=-1)
loss = None
if (labels is not None) and (not do_single_patch):
epsilon = 1e-8
labels_float = labels.float()
# Normalize each row to get target probability distribution
target_dist = labels_float / (labels_float.sum(dim=-1, keepdim=True) + epsilon)
# Apply log_softmax to logits
pred_log_probs = F.log_softmax(patch_logits, dim=-1)
# Use KL divergence as loss
loss = F.kl_div(pred_log_probs, target_dist, reduction='batchmean')
if do_single_patch and (labels is not None):
loss = F.cross_entropy(attn_scores, labels)
return attn_weights, loss
class Qwen2VLForConditionalGenerationWithPointer(Qwen2VLForConditionalGeneration):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.multi_patch_pointer_head = VisionHead_MultiPatch(self.config.hidden_size, self.config.hidden_size)
self.pointer_loss_weight = kwargs.get("pointer_loss_weight", 1.0)
self.lm_loss_weight = kwargs.get("lm_loss_weight", 1.0)
self.post_init()
def reset_loss_weights(self, pointer_loss_weight, lm_loss_weight):
self.pointer_loss_weight = pointer_loss_weight
self.lm_loss_weight = lm_loss_weight
def forward(self,
input_ids: torch.LongTensor = None, # (batch_size, seq_len)
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
# Grounding
visual_token_indices_of_coordinates: Optional[torch.Tensor] = None, # shape: (batch_size, n_target); each element is the ground-truth index of the visual token that should be attended to for the corresponding target token
multi_patch_labels: Optional[torch.Tensor] = None, # shape: list [(n_target, n_visual), ...]; binary mask of patches in bbox
if_multi_patch: bool = True,
coordinates: Optional[List[Tuple[float, float]]] = None,
verbose: bool = False) -> Union[Tuple, QwenVLwithVisionHeadOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if verbose:
rank0_print(f"input_ids: {input_ids.shape}, {input_ids[0][:5]}...")
rank0_print(f"labels: {labels.shape}, {labels[0][:5]}...")
rank0_print(f"pixel_values: {pixel_values.shape}")
rank0_print(f"image_grid_thw: {image_grid_thw.shape}, {image_grid_thw}")
rank0_print(f"coordinates: {coordinates}")
rank0_print(f"visual_token_indices_of_coordinates: {visual_token_indices_of_coordinates}")
rank0_print(f"return_dict: {return_dict}")
if inputs_embeds is None:
inputs_embeds = self.model.embed_tokens(input_ids) # shape: (batch_size, seq_len, d_model)
if pixel_values is not None:
pixel_values = pixel_values.type(self.visual.dtype)
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
n_image_features = image_embeds.shape[0]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
image_mask = (
(input_ids == self.config.image_token_id)
.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
if pixel_values_videos is not None:
pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
n_video_features = video_embeds.shape[0]
if n_video_tokens != n_video_features:
raise ValueError(
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
)
video_mask = (
(input_ids == self.config.video_token_id)
.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
if attention_mask is not None:
attention_mask = attention_mask.to(inputs_embeds.device)
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
# calculate RoPE index once per generation in the pre-fill stage only
if (
(cache_position is not None and cache_position[0] == 0)
or self.rope_deltas is None
or (past_key_values is None or past_key_values.get_seq_length() == 0)
):
position_ids, rope_deltas = self.get_rope_index(
input_ids, image_grid_thw, video_grid_thw, attention_mask
)
self.rope_deltas = rope_deltas
# then use the prev pre-calculated rope-deltas to get the correct position ids
else:
batch_size, seq_length, _ = inputs_embeds.shape
delta = cache_position[0] + self.rope_deltas if cache_position is not None else 0
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
if cache_position is not None: # otherwise `deltas` is an int `0`
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
delta = delta.to(position_ids.device)
position_ids = position_ids.add(delta)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
outputs = self.model(
input_ids=None,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0] # shape: (batch_size, seq_len, d_model)
logits = self.lm_head(hidden_states)
lm_loss = None
if labels is not None and self.lm_loss_weight > 0:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
lm_loss = loss_fct(shift_logits, shift_labels)
# If vision supervision is requested, process the action head.
pointer_loss = None
pointer_scores = []
if visual_token_indices_of_coordinates is not None:
batch_size = input_ids.shape[0]
pointer_losses = []
# Process each sample individually because the number of visual and target tokens may vary.
for i in range(batch_size):
dummy_target = False
# Get the token ids and corresponding hidden states for sample i.
token_ids = input_ids[i] # shape: (seq_length,)
hs = hidden_states[i] # shape: (seq_length, d_model)
# Identify visual tokens indices.
visual_mask = (token_ids == self.config.image_token_id)
visual_indices = torch.nonzero(visual_mask, as_tuple=False).squeeze(-1) # shape: (n_visual,)
# Identify target tokens (the ones that should attend to visual features).
target_mask = (token_ids == self.config.pointer_pad_token_id)
target_indices = torch.nonzero(target_mask, as_tuple=False).squeeze(-1)
# If either visual or target tokens are missing, skip this sample.
if visual_indices.numel() == 0:
raise ValueError(f"No visual or target tokens found for sample {i}.")
if target_indices.numel() == 0:
target_indices = torch.tensor([hs.shape[0] - 1]) # take the last token as the dummy target token
gt = torch.tensor([0]).to(hs.device) # take the first visual token as the dummy ground truth
if if_multi_patch: # task the first 4 visual tokens as the ground truth
sample_labels = torch.zeros_like(visual_indices).unsqueeze(0)
sample_labels[0][:4] = 1
dummy_target = True
else:
# For supervision, we assume that visual_token_indices_of_coordinates[i] is a tensor of shape (n_target,)
# where each element is an integer in the range [0, n_visual-1] indicating the ground-truth visual token.
gt = visual_token_indices_of_coordinates[i].to(hs.device) # shape: (n_target,)
if if_multi_patch:
sample_labels = multi_patch_labels[i]
# Gather the corresponding hidden state representations.
# visual_hidden = hs[visual_indices] # shape: (n_visual, d_model)
visual_embeds = inputs_embeds[i][visual_indices]
target_hidden = hs[target_indices] # shape: (n_target, d_model)
# Calculate loss for multi-patch mode
if if_multi_patch:
# Ensure the number of targets matches between sample and labels
if sample_labels.shape[0] != target_indices.shape[0]:
raise ValueError(f"Sample {i} has mismatched target counts: {sample_labels.shape[0]} labels but found {target_indices.shape[0]} target tokens")
# Process using VisionHead_MultiPatch
attn_scores, loss_v = self.multi_patch_pointer_head(
visual_embeds,
target_hidden,
labels=sample_labels
)
else:
# Deprecated branch - single patch mode is no longer used
# Run the action head to compute the attention (from target tokens to visual tokens) and its loss.
attn_scores, loss_v = self.pointer_head(visual_embeds, target_hidden, labels=gt)
pointer_scores.append(attn_scores.detach().cpu())
pointer_losses.append(loss_v * 0.0 if dummy_target else loss_v)
pointer_loss = torch.stack(pointer_losses).mean()
# Combine the LM loss and vision loss using the provided loss weights.
if lm_loss is None:
total_loss = pointer_loss
elif pointer_loss is None:
total_loss = lm_loss
else:
total_loss = self.lm_loss_weight * lm_loss + self.pointer_loss_weight * pointer_loss
if return_dict:
return QwenVLwithVisionHeadOutputWithPast(
lm_loss=lm_loss,
pointer_loss=pointer_loss,
pointer_scores=pointer_scores,
loss=total_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
rope_deltas=self.rope_deltas,
)
else:
# When labels are provided, parent's forward returns a tuple with loss as the first element.
if labels is not None:
# Replace the LM loss with the combined loss.
output = (lm_loss, pointer_loss, logits, pointer_scores,) + outputs[1:]
print(f"returning: total_loss, logits, pointer_scores, ...")
return (total_loss,) + output if total_loss is not None else output
else:
return outputs