Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,24 @@
|
|
1 |
-
import base64, os
|
2 |
-
|
3 |
-
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
-
from typing import Optional
|
7 |
-
from PIL import Image, ImageDraw
|
8 |
import numpy as np
|
9 |
import matplotlib.pyplot as plt
|
10 |
-
from
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from transformers import AutoProcessor
|
13 |
-
from gui_actor.constants import chat_template
|
14 |
from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer
|
15 |
from gui_actor.inference import inference
|
16 |
|
@@ -24,7 +32,6 @@ def resize_image(image, resize_to_pixels=MAX_PIXELS):
|
|
24 |
image = image.resize((image_width_resized, image_height_resized))
|
25 |
return image
|
26 |
|
27 |
-
# @spaces.GPU
|
28 |
@torch.inference_mode()
|
29 |
def draw_point(image: Image.Image, point: list, radius=8, color=(255, 0, 0, 128)):
|
30 |
overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
|
@@ -33,79 +40,91 @@ def draw_point(image: Image.Image, point: list, radius=8, color=(255, 0, 0, 128)
|
|
33 |
overlay_draw.ellipse(
|
34 |
[(x - radius, y - radius), (x + radius, y + radius)],
|
35 |
outline=color,
|
36 |
-
width=5
|
37 |
)
|
38 |
image = image.convert('RGBA')
|
39 |
combined = Image.alpha_composite(image, overlay)
|
40 |
combined = combined.convert('RGB')
|
41 |
return combined
|
42 |
|
43 |
-
# @spaces.GPU
|
44 |
@torch.inference_mode()
|
45 |
def get_attn_map(image, attn_scores, n_width, n_height):
|
46 |
w, h = image.size
|
47 |
scores = np.array(attn_scores[0]).reshape(n_height, n_width)
|
48 |
-
|
49 |
-
|
50 |
-
# Resize score map to match image size
|
51 |
-
score_map = Image.fromarray((scores_norm * 255).astype(np.uint8)).resize((w, h), resample=Image.NEAREST) # BILINEAR)
|
52 |
-
# Apply colormap
|
53 |
colormap = plt.get_cmap('jet')
|
54 |
-
colored_score_map = colormap(np.array(score_map) / 255.0)
|
55 |
-
|
56 |
-
colored_overlay = Image.fromarray(colored_score_map)
|
57 |
-
|
58 |
-
# Blend with original image
|
59 |
blended = Image.blend(image, colored_overlay, alpha=0.3)
|
60 |
return blended
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
model_name_or_path = "microsoft/GUI-Actor-3B-Qwen2.5-VL"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
|
77 |
tokenizer = data_processor.tokenizer
|
78 |
-
|
|
|
|
|
|
|
|
|
79 |
model_name_or_path,
|
80 |
-
torch_dtype=
|
81 |
-
|
82 |
).eval()
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
<div align="center">
|
87 |
-
<h1 style="padding-bottom: 10px; padding-top: 10px;">π― <strong>GUI-Actor</strong>: Coordinate-Free Visual Grounding for GUI Agents</h1>
|
88 |
-
<div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
|
89 |
-
Qianhui Wu*, Kanzhi Cheng*, Rui Yang*, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu, Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden<br>
|
90 |
-
Qingwei Lin, Huan Zhang, Tong Zhang, Jianbing Zhang, Dongmei Zhang, Jianfeng Gao<br/>
|
91 |
-
</div>
|
92 |
-
<div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
|
93 |
-
<a href="https://microsoft.github.io/GUI-Actor/">π Project Page</a> | <a href="https://arxiv.org/abs/2403.12968">π arXiv Paper</a> | <a href="https://github.com/microsoft/GUI-Actor">π» Github Repo</a><br/>
|
94 |
-
</div>
|
95 |
-
</div>
|
96 |
-
"""
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
101 |
|
102 |
-
|
103 |
@torch.inference_mode()
|
104 |
def process(image, instruction):
|
105 |
-
#
|
|
|
|
|
|
|
|
|
106 |
w, h = image.size
|
107 |
if w * h > MAX_PIXELS:
|
108 |
image = resize_image(image)
|
|
|
109 |
|
110 |
conversation = [
|
111 |
{
|
@@ -113,32 +132,39 @@ def process(image, instruction):
|
|
113 |
"content": [
|
114 |
{
|
115 |
"type": "text",
|
116 |
-
"text":
|
|
|
|
|
|
|
|
|
117 |
}
|
118 |
-
]
|
119 |
},
|
120 |
{
|
121 |
"role": "user",
|
122 |
"content": [
|
123 |
-
{
|
124 |
-
|
125 |
-
"image": image, # PIL.Image.Image or str to path
|
126 |
-
# "image_url": "https://xxxxx.png" or "https://xxxxx.jpg" or "file://xxxxx.png" or "", will be split by "base64,"
|
127 |
-
},
|
128 |
-
{
|
129 |
-
"type": "text",
|
130 |
-
"text": instruction,
|
131 |
-
},
|
132 |
],
|
133 |
},
|
134 |
]
|
135 |
|
|
|
|
|
136 |
try:
|
137 |
-
pred = inference(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
except Exception as e:
|
139 |
-
print(e)
|
140 |
return image, f"Error: {e}", None
|
141 |
-
|
142 |
px, py = pred["topk_points"][0]
|
143 |
output_coord = f"({px:.4f}, {py:.4f})"
|
144 |
img_with_point = draw_point(image, (px * w, py * h))
|
@@ -146,20 +172,37 @@ def process(image, instruction):
|
|
146 |
n_width, n_height = pred["n_width"], pred["n_height"]
|
147 |
attn_scores = pred["attn_scores"]
|
148 |
att_map = get_attn_map(image, attn_scores, n_width, n_height)
|
149 |
-
|
150 |
return img_with_point, output_coord, att_map
|
151 |
|
152 |
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
gr.Markdown(header)
|
155 |
with gr.Row():
|
156 |
with gr.Column():
|
157 |
-
input_image = gr.Image(
|
158 |
-
|
159 |
-
|
160 |
-
input_instruction = gr.Textbox(label='Instruction', placeholder='Text your (low-level) instruction here')
|
161 |
-
submit_button = gr.Button(
|
162 |
-
value='Submit', variant='primary')
|
163 |
with gr.Column():
|
164 |
image_with_point = gr.Image(type='pil', label='Image with Point (red circle)')
|
165 |
with gr.Accordion('Detailed prediction'):
|
@@ -168,13 +211,11 @@ with gr.Blocks(title=title, css=css) as demo:
|
|
168 |
|
169 |
submit_button.click(
|
170 |
fn=process,
|
171 |
-
inputs=[
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
outputs=[image_with_point, pred_xy, att_map]
|
176 |
)
|
177 |
|
178 |
-
#
|
179 |
-
|
180 |
-
demo.queue().launch(share=False)
|
|
|
1 |
+
import base64, os, json
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
import torch
|
5 |
import gradio as gr
|
|
|
|
|
6 |
import numpy as np
|
7 |
import matplotlib.pyplot as plt
|
8 |
+
from PIL import Image, ImageDraw
|
9 |
+
|
10 |
+
# ---- Hugging Face Spaces GPU decorator (safe fallback when not on Spaces) ----
|
11 |
+
try:
|
12 |
+
import spaces
|
13 |
+
GPU_DECORATOR = spaces.GPU
|
14 |
+
except Exception:
|
15 |
+
def GPU_DECORATOR(fn): # no-op locally
|
16 |
+
return fn
|
17 |
+
|
18 |
+
from qwen_vl_utils import process_vision_info # noqa: F401 (kept for parity if used elsewhere)
|
19 |
+
from datasets import load_dataset # noqa: F401
|
20 |
from transformers import AutoProcessor
|
21 |
+
from gui_actor.constants import chat_template # noqa: F401
|
22 |
from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer
|
23 |
from gui_actor.inference import inference
|
24 |
|
|
|
32 |
image = image.resize((image_width_resized, image_height_resized))
|
33 |
return image
|
34 |
|
|
|
35 |
@torch.inference_mode()
|
36 |
def draw_point(image: Image.Image, point: list, radius=8, color=(255, 0, 0, 128)):
|
37 |
overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
|
|
|
40 |
overlay_draw.ellipse(
|
41 |
[(x - radius, y - radius), (x + radius, y + radius)],
|
42 |
outline=color,
|
43 |
+
width=5
|
44 |
)
|
45 |
image = image.convert('RGBA')
|
46 |
combined = Image.alpha_composite(image, overlay)
|
47 |
combined = combined.convert('RGB')
|
48 |
return combined
|
49 |
|
|
|
50 |
@torch.inference_mode()
|
51 |
def get_attn_map(image, attn_scores, n_width, n_height):
|
52 |
w, h = image.size
|
53 |
scores = np.array(attn_scores[0]).reshape(n_height, n_width)
|
54 |
+
scores_norm = (scores - scores.min()) / (scores.max() - scores.min() + 1e-8)
|
55 |
+
score_map = Image.fromarray((scores_norm * 255).astype(np.uint8)).resize((w, h), resample=Image.NEAREST)
|
|
|
|
|
|
|
56 |
colormap = plt.get_cmap('jet')
|
57 |
+
colored_score_map = colormap(np.array(score_map) / 255.0)[:, :, :3]
|
58 |
+
colored_overlay = Image.fromarray((colored_score_map * 255).astype(np.uint8))
|
|
|
|
|
|
|
59 |
blended = Image.blend(image, colored_overlay, alpha=0.3)
|
60 |
return blended
|
61 |
|
62 |
+
# ----------------------------
|
63 |
+
# Model/device init for Spaces
|
64 |
+
# ----------------------------
|
65 |
+
def _pick_gpu_dtype() -> torch.dtype:
|
66 |
+
if not torch.cuda.is_available():
|
67 |
+
return torch.float32
|
68 |
+
major, minor = torch.cuda.get_device_capability()
|
69 |
+
# Ampere (8.x) / Hopper (9.x) support bf16 well
|
70 |
+
return torch.bfloat16 if major >= 8 else torch.float16
|
71 |
+
|
72 |
+
# Global holders initialized in load_model()
|
73 |
+
model = None
|
74 |
+
tokenizer = None
|
75 |
+
data_processor = None
|
76 |
+
|
77 |
+
@GPU_DECORATOR # <-- This is what Spaces looks for at startup
|
78 |
+
def load_model():
|
79 |
+
"""
|
80 |
+
Allocates the GPU on Spaces and loads the model on the right device/dtype.
|
81 |
+
Runs once at startup.
|
82 |
+
"""
|
83 |
+
global model, tokenizer, data_processor
|
84 |
+
|
85 |
model_name_or_path = "microsoft/GUI-Actor-3B-Qwen2.5-VL"
|
86 |
+
|
87 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
88 |
+
dtype = _pick_gpu_dtype()
|
89 |
+
|
90 |
+
# Enable some healthy defaults on GPU
|
91 |
+
if device.startswith("cuda"):
|
92 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
93 |
+
torch.set_grad_enabled(False)
|
94 |
+
|
95 |
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
|
96 |
tokenizer = data_processor.tokenizer
|
97 |
+
|
98 |
+
# Use SDPA attention to avoid flash-attn dependency
|
99 |
+
attn_impl = "sdpa"
|
100 |
+
|
101 |
+
model_local = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
|
102 |
model_name_or_path,
|
103 |
+
torch_dtype=dtype,
|
104 |
+
attn_implementation=attn_impl,
|
105 |
).eval()
|
106 |
|
107 |
+
# Move to device explicitly (avoid accelerate unless you need sharding)
|
108 |
+
model_local.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
model = model_local
|
111 |
+
return f"Loaded {model_name_or_path} on {device} with dtype={dtype} (attn={attn_impl})"
|
112 |
+
|
113 |
+
# Trigger model loading on import so Spaces allocates GPU immediately
|
114 |
+
_ = load_model()
|
115 |
|
116 |
+
@GPU_DECORATOR
|
117 |
@torch.inference_mode()
|
118 |
def process(image, instruction):
|
119 |
+
# Safety: ensure model is loaded
|
120 |
+
if model is None:
|
121 |
+
_ = load_model()
|
122 |
+
|
123 |
+
# Resize if needed
|
124 |
w, h = image.size
|
125 |
if w * h > MAX_PIXELS:
|
126 |
image = resize_image(image)
|
127 |
+
w, h = image.size
|
128 |
|
129 |
conversation = [
|
130 |
{
|
|
|
132 |
"content": [
|
133 |
{
|
134 |
"type": "text",
|
135 |
+
"text": (
|
136 |
+
"You are a GUI agent. Given a screenshot of the current GUI and a human instruction, "
|
137 |
+
"your task is to locate the screen element that corresponds to the instruction. "
|
138 |
+
"Output a PyAutoGUI action with a special token that points to the correct location."
|
139 |
+
),
|
140 |
}
|
141 |
+
],
|
142 |
},
|
143 |
{
|
144 |
"role": "user",
|
145 |
"content": [
|
146 |
+
{"type": "image", "image": image},
|
147 |
+
{"type": "text", "text": instruction},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
],
|
149 |
},
|
150 |
]
|
151 |
|
152 |
+
device = next(model.parameters()).device
|
153 |
+
|
154 |
try:
|
155 |
+
pred = inference(
|
156 |
+
conversation,
|
157 |
+
model,
|
158 |
+
tokenizer,
|
159 |
+
data_processor,
|
160 |
+
use_placeholder=True,
|
161 |
+
topk=3,
|
162 |
+
device=str(device),
|
163 |
+
)
|
164 |
except Exception as e:
|
165 |
+
print("inference error:", e)
|
166 |
return image, f"Error: {e}", None
|
167 |
+
|
168 |
px, py = pred["topk_points"][0]
|
169 |
output_coord = f"({px:.4f}, {py:.4f})"
|
170 |
img_with_point = draw_point(image, (px * w, py * h))
|
|
|
172 |
n_width, n_height = pred["n_width"], pred["n_height"]
|
173 |
attn_scores = pred["attn_scores"]
|
174 |
att_map = get_attn_map(image, attn_scores, n_width, n_height)
|
175 |
+
|
176 |
return img_with_point, output_coord, att_map
|
177 |
|
178 |
|
179 |
+
# ----------------------------
|
180 |
+
# Gradio UI
|
181 |
+
# ----------------------------
|
182 |
+
title = "GUI-Actor"
|
183 |
+
header = """
|
184 |
+
<div align="center">
|
185 |
+
<h1 style="padding-bottom: 10px; padding-top: 10px;">π― <strong>GUI-Actor</strong>: Coordinate-Free Visual Grounding for GUI Agents</h1>
|
186 |
+
<div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
|
187 |
+
Qianhui Wu*, Kanzhi Cheng*, Rui Yang*, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu, Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden<br>
|
188 |
+
Qingwei Lin, Huan Zhang, Tong Zhang, Jianbing Zhang, Dongmei Zhang, Jianfeng Gao<br/>
|
189 |
+
</div>
|
190 |
+
<div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
|
191 |
+
<a href="https://microsoft.github.io/GUI-Actor/">π Project Page</a> | <a href="https://arxiv.org/abs/2403.12968">π arXiv Paper</a> | <a href="https://github.com/microsoft/GUI-Actor">π» Github Repo</a><br/>
|
192 |
+
</div>
|
193 |
+
</div>
|
194 |
+
"""
|
195 |
+
theme = "soft"
|
196 |
+
css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;}
|
197 |
+
#anno-img .mask.active {opacity: 0.7}"""
|
198 |
+
|
199 |
+
with gr.Blocks(title=title, css=css, theme=theme) as demo:
|
200 |
gr.Markdown(header)
|
201 |
with gr.Row():
|
202 |
with gr.Column():
|
203 |
+
input_image = gr.Image(type='pil', label='Upload image')
|
204 |
+
input_instruction = gr.Textbox(label='Instruction', placeholder='Type your (low-level) instruction here')
|
205 |
+
submit_button = gr.Button(value='Submit', variant='primary')
|
|
|
|
|
|
|
206 |
with gr.Column():
|
207 |
image_with_point = gr.Image(type='pil', label='Image with Point (red circle)')
|
208 |
with gr.Accordion('Detailed prediction'):
|
|
|
211 |
|
212 |
submit_button.click(
|
213 |
fn=process,
|
214 |
+
inputs=[input_image, input_instruction],
|
215 |
+
outputs=[image_with_point, pred_xy, att_map],
|
216 |
+
queue=True,
|
217 |
+
api_name="predict",
|
|
|
218 |
)
|
219 |
|
220 |
+
# On Spaces, queue is required to get GPU scheduling; set a modest concurrency
|
221 |
+
demo.queue(concurrency_count=1, max_size=8).launch(share=False)
|
|