import torch import json import re import os from qwen_vl_utils import process_vision_info from transformers import ( Qwen2VLForConditionalGeneration, LogitsProcessor, LogitsProcessorList, AutoModelForCausalLM, AutoTokenizer ) from gui_actor.constants import ( DEFAULT_POINTER_END_TOKEN, DEFAULT_POINTER_PAD_TOKEN, chat_template ) class ForceFollowTokensLogitsProcessor(LogitsProcessor): """ Forces tokens B (pointer_pad_token) and C (pointer_end_token) to follow token A (pointer_start_token). Whenever token_a_id is generated, enqueue the forced_sequence (e.g. [B, C]). As long as forced tokens remain in the queue, force them in the output. """ def __init__(self, token_a_id, forced_sequence=[DEFAULT_POINTER_PAD_TOKEN, DEFAULT_POINTER_END_TOKEN]): super().__init__() self.token_a_id = token_a_id self.forced_sequence = forced_sequence # list of token IDs, e.g. [B_id, C_id] self.force_queue = [] # holds the tokens we still need to force def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: """ Called at each decoding step to modify `scores`. Args: input_ids: shape (batch_size, seq_len). The already-decoded tokens. scores: shape (batch_size, vocab_size). Model logits for the next token. """ batch_size = input_ids.shape[0] if batch_size > 1: raise NotImplementedError("Batch size must be 1 for this logits processor.") # We assume batch_size=1 for simplicity; if you have multiple sequences, # you'll need to adapt the logic to handle each item in the batch. last_token_id = input_ids[0, -1].item() # If the last token was A, enqueue B and C if last_token_id == self.token_a_id: self.force_queue.extend(self.forced_sequence) # If we have forced tokens waiting in the queue, override the distribution if len(self.force_queue) > 0: forced_token = self.force_queue.pop(0) # next token to force # Create a mask of -inf for all tokens except the forced one new_scores = torch.full_like(scores, float('-inf')) new_scores[0, forced_token] = 0.0 # log prob = 0 => prob = 1 return new_scores # Otherwise, return scores unmodified return scores def get_prediction_region_point(attn_scores, n_width, n_height, top_n=30, activation_threshold=0.3, return_all_regions=True, rect_center=False): """ 1. Select activated patches 2. Divide connected patches into different regions 3. Calculate the average activation value for each region 4. Select the region with the highest average activation value 5. Return the center point of that region as the final prediction point """ # Get patches with activation values greater than a certain proportion of the maximum activation value as activated patches # Get the highest activation value and threshold max_score = attn_scores[0].max().item() threshold = max_score * activation_threshold # Select all patches above the threshold mask = attn_scores[0] > threshold valid_indices = torch.nonzero(mask).squeeze(-1) topk_values = attn_scores[0][valid_indices] topk_indices = valid_indices # Convert indices to 2D coordinates topk_coords = [] for idx in topk_indices.tolist(): y = idx // n_width x = idx % n_width topk_coords.append((y, x, idx)) # Divide into connected regions regions = [] visited = set() for i, (y, x, idx) in enumerate(topk_coords): if idx in visited: continue # Start a new region region = [(y, x, idx, topk_values[i].item())] visited.add(idx) queue = [(y, x, idx, topk_values[i].item())] # BFS to find connected points while queue: cy, cx, c_idx, c_val = queue.pop(0) # Check 4 adjacent directions for dy, dx in [(-1, 0), (1, 0), (0, -1), (0, 1)]: ny, nx = cy + dy, cx + dx n_idx = ny * n_width + nx # Check if this adjacent point is in the topk list for j, (ty, tx, t_idx) in enumerate(topk_coords): if ty == ny and tx == nx and t_idx not in visited: visited.add(t_idx) region.append((ny, nx, t_idx, topk_values[j].item())) queue.append((ny, nx, t_idx, topk_values[j].item())) regions.append(region) # Calculate the average activation value for each region region_scores = [] region_centers = [] region_points = [] for region in regions: # Calculate average score for the region avg_score = sum(item[3] for item in region) / len(region) region_scores.append(avg_score) # Calculate normalized center coordinates for each patch, then take the average normalized_centers = [] weights = [] y_coords = set() x_coords = set() for y, x, _, score in region: # Normalized coordinates of the center point for each patch center_y = (y + 0.5) / n_height center_x = (x + 0.5) / n_width normalized_centers.append((center_x, center_y)) weights.append(score) y_coords.add(center_y) x_coords.add(center_x) region_points.append(normalized_centers) # Calculate the average of normalized coordinates as the region center if not rect_center: # Weighted average total_weight = sum(weights) weighted_x = sum(nc[0] * w for nc, w in zip(normalized_centers, weights)) / total_weight weighted_y = sum(nc[1] * w for nc, w in zip(normalized_centers, weights)) / total_weight avg_center_x, avg_center_y = weighted_x, weighted_y # # Simple average # avg_center_x = sum(nc[0] for nc in normalized_centers) / len(normalized_centers) # avg_center_y = sum(nc[1] for nc in normalized_centers) / len(normalized_centers) else: avg_center_x = sum(x_coords) / len(x_coords) avg_center_y = sum(y_coords) / len(y_coords) region_centers.append((avg_center_x, avg_center_y)) # Select the region with the highest average activation value sorted_indices = sorted(range(len(region_scores)), key=lambda i: region_scores[i], reverse=True) sorted_scores = [region_scores[i] for i in sorted_indices] sorted_centers = [region_centers[i] for i in sorted_indices] sorted_points = [region_points[i] for i in sorted_indices] best_point = sorted_centers[0] if return_all_regions: # Outputs: # 1. best_point: the center point of the region with the highest average activation value # 2. sorted_centers: the center points of all regions, sorted by the average activation value in descending order # 3. sorted_scores: the average activation values of all regions, sorted in descending order # 4. sorted_points: the normalized center coordinates of all patches, sorted by the average activation value in descending order return best_point, sorted_centers, sorted_scores, sorted_points else: return best_point def inference(conversation, model, tokenizer, data_processor, logits_processor=None, use_placeholder=False, topk=5): """ conversation = [ { "role": "system", "content": [ { "type": "text", "text": grounding_system_message, } ] }, { "role": "user", "content": [ { "type": "image", "image": example["image"], # PIL.Image.Image or str to path # "image_url": "https://xxxxx.png" or "https://xxxxx.jpg" or "file://xxxxx.png" or "", will be split by "base64," }, { "type": "text", "text": example["instruction"] }, ], }, ] """ if logits_processor is None: logits_processor = ForceFollowTokensLogitsProcessor( token_a_id=tokenizer.encode(DEFAULT_POINTER_PAD_TOKEN)[0], forced_sequence=[ tokenizer.encode(DEFAULT_POINTER_END_TOKEN)[0] ] ) assiatant_starter = "" if not use_placeholder else "<|im_start|>assistant<|recipient|>os\npyautogui.click(<|pointer_start|><|pointer_pad|><|pointer_end|>)" pred = { "output_text": None, # generated text "n_width": None, # number of patch_tokens in width dimension "n_height": None, # number of patch_tokens in height dimension "attn_scores": None, # attention scores over the image patches "topk_points": None, # topk points "topk_values": None, # topk values "topk_points_all": None, # all points } # prepare text text = data_processor.apply_chat_template(conversation, tokenize=False, add_generation_prompt=False, chat_template=chat_template ) text += assiatant_starter # prepare inputs image_inputs, video_inputs = process_vision_info(conversation) inputs = data_processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ) inputs = inputs.to(model.device) # generate results = model.generate(**inputs, max_new_tokens=2048 if not use_placeholder else 1, logits_processor=LogitsProcessorList([logits_processor]), return_dict_in_generate=True, output_hidden_states=True ) # decode the generated ids input_ids = inputs["input_ids"][0] generated_ids = results.sequences[0][len(input_ids):] output_text = tokenizer.decode(generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False) pred["output_text"] = output_text # check if there are is inside the input_ids or generated_ids if use_placeholder: pointer_pad_mask = (inputs["input_ids"][0] == model.config.pointer_pad_token_id) # n_all_input_tokens else: pointer_pad_mask = (generated_ids[:-1] == model.config.pointer_pad_token_id) # seq_len_generated_ids-1 # if there are no in the input_ids or generated_ids, return the pred if len(pointer_pad_mask) == 0: return pred # otherwise, get the coordinate from the action head if use_placeholder: decoder_hidden_states = results.hidden_states[0][-1][0] # n_all_input_tokens, hidden_size else: decoder_hidden_states = [step_hidden_states[-1][0] for step_hidden_states in results.hidden_states[1:]] decoder_hidden_states = torch.cat(decoder_hidden_states, dim=0) # seq_len_generated_ids-1, hidden_size decoder_hidden_states = decoder_hidden_states[pointer_pad_mask] # n_pointer_pad_tokens, hidden_size # get the image embeddings as encoder vectors # image_embeds = model.visual(inputs["pixel_values"], grid_thw=inputs["image_grid_thw"]) # n_image_tokens, hidden_size image_mask = (inputs["input_ids"][0] == tokenizer.encode("<|image_pad|>")[0]) image_embeds = results.hidden_states[0][0][0][image_mask] # n_image_tokens, hidden_size attn_scores, _ = model.multi_patch_pointer_head(image_embeds, decoder_hidden_states) pred["attn_scores"] = attn_scores.tolist() _, n_height, n_width = (inputs["image_grid_thw"][0] // model.visual.spatial_merge_size).tolist() pred["n_width"] = n_width pred["n_height"] = n_height # get the topk points according to the attention scores best_point, region_points, region_scores, region_points_all = get_prediction_region_point(attn_scores, n_width, n_height, return_all_regions=True, rect_center=False) topk_points = region_points[:topk] if len(region_points) > topk else region_points topk_values = region_scores[:topk] if len(region_scores) > topk else region_scores topk_points_all = region_points_all[:topk] if len(region_points_all) > topk else region_points_all pred["topk_points"] = topk_points pred["topk_values"] = topk_values pred["topk_points_all"] = topk_points_all return pred