MusIre's picture
Create app.py
c6a6aba
raw
history blame
945 Bytes
import subprocess
subprocess.run(["pip", "install", "PyPDF2", "transformers", "bark", "gradio"])
import PyPDF2
from transformers import pipeline
from bark import SAMPLE_RATE, generate_audio, preload_models
import gradio as gr
def summarize_and_convert_to_audio(pdf_path, abstract_page):
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
# Get the abstract page text
abstract_page_text = pdf_reader.pages[abstract_page - 1].extract_text()
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
summary = summarizer(abstract_page_text, max_length=20, min_length=20)
preload_models()
text = summary[0]['summary_text']
audio_array = generate_audio(text)
return Audio(audio_array, rate=SAMPLE_RATE)
iface = gr.Interface(
fn=summarize_and_convert_to_audio,
inputs=["file", "number"],
outputs="audio",
live=True
)
iface.launch()