Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
import plotly.express as px
|
7 |
+
|
8 |
+
num_rows = 20000
|
9 |
+
df = pd.read_csv('/emails.csv', on_bad_lines='skip', nrows=num_rows)
|
10 |
+
|
11 |
+
def get_message(Series: pd.Series):
|
12 |
+
result = pd.Series(index=Series.index)
|
13 |
+
for row, message in enumerate(Series):
|
14 |
+
message_words = message.split('\n')
|
15 |
+
del message_words[:15]
|
16 |
+
result.iloc[row] = ''.join(message_words).strip()
|
17 |
+
return result
|
18 |
+
|
19 |
+
def get_date(Series: pd.Series):
|
20 |
+
result = pd.Series(index=Series.index)
|
21 |
+
for row, message in enumerate(Series):
|
22 |
+
message_words = message.split('\n')
|
23 |
+
del message_words[0]
|
24 |
+
del message_words[1:]
|
25 |
+
result.iloc[row] = ''.join(message_words).strip()
|
26 |
+
result.iloc[row] = result.iloc[row].replace('Date: ', '')
|
27 |
+
print('Done parsing, converting to datetime format..')
|
28 |
+
return pd.to_datetime(result)
|
29 |
+
|
30 |
+
def get_sender_and_receiver(Series: pd.Series):
|
31 |
+
sender = pd.Series(index = Series.index)
|
32 |
+
recipient1 = pd.Series(index = Series.index)
|
33 |
+
recipient2 = pd.Series(index = Series.index)
|
34 |
+
recipient3 = pd.Series(index = Series.index)
|
35 |
+
|
36 |
+
for row,message in enumerate(Series):
|
37 |
+
message_words = message.split('\n')
|
38 |
+
sender[row] = message_words[2].replace('From: ', '')
|
39 |
+
recipient1[row] = message_words[3].replace('To: ', '')
|
40 |
+
recipient2[row] = message_words[10].replace('X-cc: ', '')
|
41 |
+
recipient3[row] = message_words[11].replace('X-bcc: ', '')
|
42 |
+
|
43 |
+
return sender, recipient1, recipient2, recipient3
|
44 |
+
|
45 |
+
def get_subject(Series: pd.Series):
|
46 |
+
result = pd.Series(index = Series.index)
|
47 |
+
|
48 |
+
for row, message in enumerate(Series):
|
49 |
+
message_words = message.split('\n')
|
50 |
+
message_words = message_words[4]
|
51 |
+
result[row] = message_words.replace('Subject: ', '')
|
52 |
+
return result
|
53 |
+
|
54 |
+
def get_folder(Series: pd.Series):
|
55 |
+
result = pd.Series(index = Series.index)
|
56 |
+
|
57 |
+
for row, message in enumerate(Series):
|
58 |
+
message_words = message.split('\n')
|
59 |
+
message_words = message_words[12]
|
60 |
+
result[row] = message_words.replace('X-Folder: ', '')
|
61 |
+
return result
|
62 |
+
|
63 |
+
df['text'] = get_message(df.message)
|
64 |
+
df['sender'], df['recipient1'], df['recipient2'], df['recipient3'] = get_sender_and_receiver(df.message)
|
65 |
+
df['Subject'] = get_subject(df.message)
|
66 |
+
df['folder'] = get_folder(df.message)
|
67 |
+
df['date'] = get_date(df.message)
|
68 |
+
|
69 |
+
df = df.drop(['message', 'file'], axis = 1)
|
70 |
+
|
71 |
+
df.head(100)
|
72 |
+
|
73 |
+
|
74 |
+
import chromadb
|
75 |
+
chroma_client = chromadb.Client()
|
76 |
+
|
77 |
+
collection = chroma_client.create_collection(name="emails")
|
78 |
+
|
79 |
+
df.loc[4, 'text']
|
80 |
+
|
81 |
+
for i in df.index:
|
82 |
+
collection.add(
|
83 |
+
|
84 |
+
documents = df.loc[i, 'text'],
|
85 |
+
|
86 |
+
|
87 |
+
metadatas = [{"sender": df.loc[i, 'sender'],
|
88 |
+
"recipient1": df.loc[i, 'recipient1'],
|
89 |
+
"recipient2": df.loc[i, 'recipient2'],
|
90 |
+
"recipient3": df.loc[i, 'recipient3'],
|
91 |
+
"subject": df.loc[i, 'Subject'],
|
92 |
+
"folder": df.loc[i, 'folder'],
|
93 |
+
"date": str(df.loc[i, 'date'])
|
94 |
+
}],
|
95 |
+
|
96 |
+
|
97 |
+
ids = str(i)
|
98 |
+
)
|
99 |
+
|
100 |
+
collection.get(
|
101 |
+
ids=["140"]
|
102 |
+
)
|
103 |
+
|
104 |
+
results = collection.query(
|
105 |
+
query_texts = ["this is a document"],
|
106 |
+
n_results = 2,
|
107 |
+
include = ['distances', 'metadatas', 'documents']
|
108 |
+
)
|
109 |
+
results
|
110 |
+
|
111 |
+
|
112 |
+
from chromadb.utils import embedding_functions
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="paraphrase-MiniLM-L3-v2")
|
117 |
+
|
118 |
+
collection_minilm = chroma_client.create_collection(name="emails_minilm", embedding_function=sentence_transformer_ef)
|
119 |
+
|
120 |
+
|
121 |
+
for i in df.index:
|
122 |
+
print(i)
|
123 |
+
collection_minilm.add(
|
124 |
+
|
125 |
+
documents = df.loc[i, 'text'],
|
126 |
+
|
127 |
+
metadatas = [{"sender": df.loc[i, 'sender'],
|
128 |
+
"recipient1": df.loc[i, 'recipient1'],
|
129 |
+
"recipient2": df.loc[i, 'recipient2'],
|
130 |
+
"recipient3": df.loc[i, 'recipient3'],
|
131 |
+
"subject": df.loc[i, 'Subject'],
|
132 |
+
"folder": df.loc[i, 'folder'],
|
133 |
+
"date": str(df.loc[i, 'date'])
|
134 |
+
}],
|
135 |
+
|
136 |
+
|
137 |
+
ids = str(i)
|
138 |
+
)
|
139 |
+
|
140 |
+
results = collection_minilm.query(
|
141 |
+
query_texts = ["this is a document"],
|
142 |
+
n_results = 2,
|
143 |
+
include = ['distances', 'metadatas', 'documents']
|
144 |
+
)
|
145 |
+
results
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
import gradio as gr
|
152 |
+
|
153 |
+
|
154 |
+
def query_chromadb(question,numberOfResults):
|
155 |
+
results = collection_minilm.query(
|
156 |
+
n_results = numberOfResults,
|
157 |
+
)
|
158 |
+
|
159 |
+
return results['documents'][0]
|
160 |
+
|
161 |
+
iface = gr.Interface(
|
162 |
+
fn=query_chromadb,
|
163 |
+
inputs=["text","number"],
|
164 |
+
outputs="text",
|
165 |
+
title="Email Dataset Interface",
|
166 |
+
description="Insert the question or the key word to find the topic correlated in the dataset"
|
167 |
+
)
|
168 |
+
|
169 |
+
iface.launch(share=True)
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
import ast
|
174 |
+
|
175 |
+
def create_output(dictionary, number):
|
176 |
+
|
177 |
+
dictionary_ids = str(dictionary['ids'])
|
178 |
+
|
179 |
+
|
180 |
+
dictionary_ids_clean = dictionary_ids.strip("[]")
|
181 |
+
|
182 |
+
dictionary_ids_clean = dictionary_ids_clean.replace("'", "")
|
183 |
+
|
184 |
+
|
185 |
+
dictionary_ids_list = dictionary_ids_clean.split(", ")
|
186 |
+
|
187 |
+
string_results = "";
|
188 |
+
|
189 |
+
|
190 |
+
for n in range(number):
|
191 |
+
t = collection_minilm.get(
|
192 |
+
ids=[dictionary_ids_list[n]]
|
193 |
+
)
|
194 |
+
|
195 |
+
|
196 |
+
id = str(t["ids"])
|
197 |
+
doc = str(t["documents"])
|
198 |
+
metadata = str(t["metadatas"])
|
199 |
+
|
200 |
+
dictionary_metadata = ast.literal_eval(metadata.strip("[]"))
|
201 |
+
|
202 |
+
string_results_old = string_results
|
203 |
+
|
204 |
+
string_temp = """---------------
|
205 |
+
SUBJECT: """ + dictionary_metadata['subject'] + """"
|
206 |
+
MESSAGE: """ + "\n" + doc + """
|
207 |
+
---------------"""
|
208 |
+
|
209 |
+
string_results = string_results_old + string_temp
|
210 |
+
|
211 |
+
return string_results
|
212 |
+
|
213 |
+
def query_chromadb_advanced(question,numberOfResults):
|
214 |
+
results = collection_minilm.query(
|
215 |
+
query_texts = question,
|
216 |
+
n_results = numberOfResults,
|
217 |
+
)
|
218 |
+
|
219 |
+
return create_output(results, numberOfResults)
|
220 |
+
|
221 |
+
|
222 |
+
result_advance = query_chromadb_advanced("bank", 4)
|
223 |
+
|
224 |
+
print(result_advance)
|
225 |
+
|
226 |
+
iface = gr.Interface(
|
227 |
+
fn=query_chromadb_advanced,
|
228 |
+
inputs=["text","number"],
|
229 |
+
outputs="text",
|
230 |
+
title="Email Dataset Interface",
|
231 |
+
description="Insert the question or the key word to find the topic correlated in the dataset"
|
232 |
+
)
|
233 |
+
|
234 |
+
iface.launch(share=True)
|