import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px import chromadb chroma_client = chromadb.Client() collection = chroma_client.create_collection(name="emails") df.loc[4, 'text'] for i in df.index: collection.add( documents = df.loc[i, 'text'], metadatas = [{"sender": df.loc[i, 'sender'], "recipient1": df.loc[i, 'recipient1'], "recipient2": df.loc[i, 'recipient2'], "recipient3": df.loc[i, 'recipient3'], "subject": df.loc[i, 'Subject'], "folder": df.loc[i, 'folder'], "date": str(df.loc[i, 'date']) }], ids = str(i) ) collection.get( ids=["140"] ) results = collection.query( query_texts = ["this is a document"], n_results = 2, include = ['distances', 'metadatas', 'documents'] ) results from chromadb.utils import embedding_functions sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="paraphrase-MiniLM-L3-v2") collection_minilm = chroma_client.create_collection(name="emails_minilm", embedding_function=sentence_transformer_ef) for i in df.index: print(i) collection_minilm.add( documents = df.loc[i, 'text'], metadatas = [{"sender": df.loc[i, 'sender'], "recipient1": df.loc[i, 'recipient1'], "recipient2": df.loc[i, 'recipient2'], "recipient3": df.loc[i, 'recipient3'], "subject": df.loc[i, 'Subject'], "folder": df.loc[i, 'folder'], "date": str(df.loc[i, 'date']) }], ids = str(i) ) results = collection_minilm.query( query_texts = ["this is a document"], n_results = 2, include = ['distances', 'metadatas', 'documents'] ) results import gradio as gr def query_chromadb(question,numberOfResults): results = collection_minilm.query( n_results = numberOfResults, ) return results['documents'][0] iface = gr.Interface( fn=query_chromadb, inputs=["text","number"], outputs="text", title="Email Dataset Interface", description="Insert the question or the key word to find the topic correlated in the dataset" ) iface.launch(share=True) import ast def create_output(dictionary, number): dictionary_ids = str(dictionary['ids']) dictionary_ids_clean = dictionary_ids.strip("[]") dictionary_ids_clean = dictionary_ids_clean.replace("'", "") dictionary_ids_list = dictionary_ids_clean.split(", ") string_results = ""; for n in range(number): t = collection_minilm.get( ids=[dictionary_ids_list[n]] ) id = str(t["ids"]) doc = str(t["documents"]) metadata = str(t["metadatas"]) dictionary_metadata = ast.literal_eval(metadata.strip("[]")) string_results_old = string_results string_temp = """--------------- SUBJECT: """ + dictionary_metadata['subject'] + """" MESSAGE: """ + "\n" + doc + """ ---------------""" string_results = string_results_old + string_temp return string_results def query_chromadb_advanced(question,numberOfResults): results = collection_minilm.query( query_texts = question, n_results = numberOfResults, ) return create_output(results, numberOfResults) result_advance = query_chromadb_advanced("bank", 4) print(result_advance) iface = gr.Interface( fn=query_chromadb_advanced, inputs=["text","number"], outputs="text", title="Email Dataset Interface", description="Insert the question or the key word to find the topic correlated in the dataset" ) iface.launch(share=True)