Spaces:
Sleeping
Sleeping
import subprocess | |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"]) | |
subprocess.run(["pip", "install", "gradio", "--upgrade"]) | |
subprocess.run(["pip", "install", "datasets"]) | |
subprocess.run(["pip", "install", "transformers"]) | |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) | |
import gradio as gr | |
import numpy as np | |
import torch | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
# Load model and processor | |
processor = WhisperProcessor.from_pretrained("openai/whisper-large") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large") | |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe") | |
# Custom preprocessing function | |
def preprocess_audio(audio_data, sampling_rate=16_000): | |
sample_rate, raw_audio = audio_data | |
raw_speech = np.asarray(raw_audio, dtype=np.float32) | |
return {"input_values": raw_speech, "sampling_rate": sample_rate} | |
# Function to perform ASR on audio data | |
def transcribe_audio(audio_data): | |
input_features = preprocess_audio(audio_data) | |
input_values = torch.tensor(input_features["input_values"]).unsqueeze(0) # Add batch dimension | |
input_values = input_values.view(1, -1) # Flatten the tensor to 2D | |
predicted_ids = model.generate(input_values) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription[0] | |
# Create Gradio interface | |
audio_input = gr.Audio() | |
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch() | |