practiceAI / app.py
MusIre's picture
Update app.py
7634d42
raw
history blame
2.12 kB
import subprocess
subprocess.run(["pip", "install", "gradio", "--upgrade"])
subprocess.run(["pip", "install", "transformers"])
subprocess.run(["pip", "install", "torchaudio", "--upgrade"])
import gradio as gr
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torchaudio
import torch
# Load model and processor
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian")
model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian")
def preprocess_audio(audio_data):
# Apply any custom preprocessing to the audio data here if needed
return processor(audio_data, return_tensors="pt").input_features
# Function to perform ASR on audio data
def transcribe_audio(input_features):
print("Received audio data:", input_features) # Debug print
# Check if audio_data is None or not a tuple of length 2
if audio_data is None or not isinstance(input_features, tuple) or len(input_features) != 2:
return "Invalid audio data format."
sample_rate, waveform = input_features
# Check if waveform is None or not a NumPy array
if waveform is None or not isinstance(waveform, torch.Tensor):
return "Invalid audio data format."
try:
# Convert audio data to mono and normalize
audio_data = torchaudio.transforms.Resample(sample_rate, 100000)(waveform)
audio_data = torchaudio.functional.gain(input_features, gain_db=5.0)
# Apply custom preprocessing to the audio data if needed
input_values = processor(input_features[0], return_tensors="pt").input_values
# Perform ASR
with torch.no_grad():
logits = model(input_values).logits
# Decode the output
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
return transcription[0]
except Exception as e:
return f"An error occurred: {str(e)}"
# Create Gradio interface
audio_input = gr.Audio(sources=["microphone"])
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()