MusIre commited on
Commit
038e82c
·
1 Parent(s): b2593bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -22
app.py CHANGED
@@ -1,15 +1,4 @@
1
  import subprocess
2
-
3
-
4
- subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
5
- subprocess.run(["pip", "install", "gradio", "--upgrade"])
6
- subprocess.run(["pip", "install", "soundfile"])
7
- subprocess.run(["pip", "install", "numpy"])
8
- subprocess.run(["pip", "install", "pydub"])
9
- subprocess.run(["pip", "install", "openai"])
10
-
11
- import subprocess
12
-
13
  subprocess.run(["pip", "install", "datasets"])
14
  subprocess.run(["pip", "install", "transformers"])
15
  subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
@@ -22,21 +11,19 @@ processor = WhisperProcessor.from_pretrained("openai/whisper-large")
22
  model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
23
  model.config.forced_decoder_ids = None
24
 
25
- # Custom preprocessing function
26
- def preprocess_audio(audio_data):
27
- # Apply any custom preprocessing to the audio data here if needed
28
- return processor(audio_data, return_tensors="pt").input_features
29
-
30
  # Function to perform ASR on audio data
31
- def transcribe_audio(input_features):
 
 
 
32
  # Generate token ids
33
- predicted_ids = model.generate(input_features)
34
-
35
  # Decode token ids to text
36
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
37
-
38
  return transcription[0]
39
 
40
  # Create Gradio interface
41
- audio_input = gr.Audio(preprocess=preprocess_audio)
42
- gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()
 
1
  import subprocess
 
 
 
 
 
 
 
 
 
 
 
2
  subprocess.run(["pip", "install", "datasets"])
3
  subprocess.run(["pip", "install", "transformers"])
4
  subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
 
11
  model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
12
  model.config.forced_decoder_ids = None
13
 
 
 
 
 
 
14
  # Function to perform ASR on audio data
15
+ def transcribe_audio(audio_data):
16
+ # Apply custom preprocessing to the audio data if needed
17
+ processed_input = processor(audio_data, return_tensors="pt").input_features
18
+
19
  # Generate token ids
20
+ predicted_ids = model.generate(processed_input)
21
+
22
  # Decode token ids to text
23
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
24
+
25
  return transcription[0]
26
 
27
  # Create Gradio interface
28
+ audio_input = gr.Audio()
29
+ gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()