Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ subprocess.run(["pip", "install", "transformers"])
|
|
7 |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
|
|
10 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
11 |
|
12 |
# Load model and processor
|
@@ -23,7 +24,8 @@ def preprocess_audio(audio_data, sampling_rate=16_000):
|
|
23 |
# Function to perform ASR on audio data
|
24 |
def transcribe_audio(audio_data):
|
25 |
input_features = preprocess_audio(audio_data)
|
26 |
-
|
|
|
27 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
28 |
return transcription[0]
|
29 |
|
|
|
7 |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
+
import torch
|
11 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
12 |
|
13 |
# Load model and processor
|
|
|
24 |
# Function to perform ASR on audio data
|
25 |
def transcribe_audio(audio_data):
|
26 |
input_features = preprocess_audio(audio_data)
|
27 |
+
input_values = torch.tensor(input_features["input_values"]).unsqueeze(0) # Add batch dimension
|
28 |
+
predicted_ids = model.generate(input_values)
|
29 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
30 |
return transcription[0]
|
31 |
|