MusIre commited on
Commit
22fbcf1
·
1 Parent(s): 0cae98f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -5
app.py CHANGED
@@ -15,19 +15,24 @@ model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-it
15
  # Function to perform ASR on audio data
16
  def transcribe_audio(audio_data):
17
  print("Received audio data:", audio_data) # Debug print
18
- if audio_data is None or len(audio_data) != 2:
 
 
19
  return "Invalid audio data format."
20
 
21
- try:
22
- # Extract sample rate and audio waveform from the tuple
23
- sample_rate, waveform = audio_data
24
 
 
 
 
 
 
25
  # Convert audio data to mono and normalize
26
  audio_data = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
27
  audio_data = torchaudio.functional.gain(audio_data, gain_db=5.0)
28
 
29
  # Apply custom preprocessing to the audio data if needed
30
- input_values = processor(torch.tensor(audio_data[0]), return_tensors="pt").input_values
31
 
32
  # Perform ASR
33
  with torch.no_grad():
 
15
  # Function to perform ASR on audio data
16
  def transcribe_audio(audio_data):
17
  print("Received audio data:", audio_data) # Debug print
18
+
19
+ # Check if audio_data is None or not a tuple of length 2
20
+ if audio_data is None or not isinstance(audio_data, tuple) or len(audio_data) != 2:
21
  return "Invalid audio data format."
22
 
23
+ sample_rate, waveform = audio_data
 
 
24
 
25
+ # Check if waveform is None or not a NumPy array
26
+ if waveform is None or not isinstance(waveform, torch.Tensor):
27
+ return "Invalid audio data format."
28
+
29
+ try:
30
  # Convert audio data to mono and normalize
31
  audio_data = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
32
  audio_data = torchaudio.functional.gain(audio_data, gain_db=5.0)
33
 
34
  # Apply custom preprocessing to the audio data if needed
35
+ input_values = processor(audio_data[0], return_tensors="pt").input_values
36
 
37
  # Perform ASR
38
  with torch.no_grad():