Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,30 +5,25 @@ subprocess.run(["pip", "install", "gradio", "--upgrade"])
|
|
5 |
subprocess.run(["pip", "install", "datasets"])
|
6 |
subprocess.run(["pip", "install", "transformers"])
|
7 |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
8 |
-
import gradio as gr
|
9 |
-
import numpy as np
|
10 |
-
import torch
|
11 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
|
|
12 |
|
13 |
-
#
|
14 |
-
processor = WhisperProcessor.from_pretrained("openai/whisper-
|
15 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-
|
16 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
return {"input_values": raw_speech, "sampling_rate": sample_rate}
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
31 |
-
return transcription[0]
|
32 |
|
33 |
# Create Gradio interface
|
34 |
audio_input = gr.Audio()
|
|
|
5 |
subprocess.run(["pip", "install", "datasets"])
|
6 |
subprocess.run(["pip", "install", "transformers"])
|
7 |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
|
|
|
|
|
|
8 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
9 |
+
from datasets import load_dataset
|
10 |
|
11 |
+
# load model and processor
|
12 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
13 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
14 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")
|
15 |
|
16 |
+
# load dummy dataset and read audio files
|
17 |
+
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
18 |
+
sample = ds[0]["audio"]
|
19 |
+
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
|
|
20 |
|
21 |
+
# generate token ids
|
22 |
+
predicted_ids = model.generate(input_features)
|
23 |
+
# decode token ids to text
|
24 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
25 |
+
|
26 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
|
|
|
|
27 |
|
28 |
# Create Gradio interface
|
29 |
audio_input = gr.Audio()
|