Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ subprocess.run(["pip", "install", "gradio", "--upgrade"])
|
|
3 |
subprocess.run(["pip", "install", "transformers"])
|
4 |
subprocess.run(["pip", "install", "torchaudio", "--upgrade"])
|
5 |
|
|
|
6 |
import gradio as gr
|
7 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
8 |
import torchaudio
|
@@ -13,22 +14,29 @@ model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-it
|
|
13 |
|
14 |
# Function to perform ASR on audio data
|
15 |
def transcribe_audio(audio_data):
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
29 |
-
transcription = processor.batch_decode(predicted_ids)
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
# Create Gradio interface
|
34 |
audio_input = gr.Audio()
|
|
|
3 |
subprocess.run(["pip", "install", "transformers"])
|
4 |
subprocess.run(["pip", "install", "torchaudio", "--upgrade"])
|
5 |
|
6 |
+
|
7 |
import gradio as gr
|
8 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
9 |
import torchaudio
|
|
|
14 |
|
15 |
# Function to perform ASR on audio data
|
16 |
def transcribe_audio(audio_data):
|
17 |
+
if audio_data is None:
|
18 |
+
return "No audio data received."
|
19 |
+
|
20 |
+
try:
|
21 |
+
# Convert audio data to mono and normalize
|
22 |
+
audio_data = torchaudio.transforms.Resample(audio_data[1], 16000)(audio_data[0])
|
23 |
+
audio_data = torchaudio.functional.gain(audio_data, gain_db=5.0)
|
24 |
+
|
25 |
+
# Apply custom preprocessing to the audio data if needed
|
26 |
+
input_values = processor(audio_data[0].numpy(), return_tensors="pt").input_values
|
27 |
|
28 |
+
# Perform ASR
|
29 |
+
with torch.no_grad():
|
30 |
+
logits = model(input_values).logits
|
31 |
|
32 |
+
# Decode the output
|
33 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
34 |
+
transcription = processor.batch_decode(predicted_ids)
|
35 |
|
36 |
+
return transcription[0]
|
|
|
|
|
37 |
|
38 |
+
except Exception as e:
|
39 |
+
return f"An error occurred: {str(e)}"
|
40 |
|
41 |
# Create Gradio interface
|
42 |
audio_input = gr.Audio()
|