Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,11 +14,27 @@ model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
|
|
14 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")
|
15 |
|
16 |
# Custom preprocessing function
|
17 |
-
def preprocess_audio(audio_data):
|
18 |
-
# Apply any custom preprocessing to the audio data here if needed
|
19 |
# Ensure that the input data is a valid format for the model
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Function to perform ASR on audio data
|
24 |
def transcribe_audio(audio_data):
|
|
|
14 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")
|
15 |
|
16 |
# Custom preprocessing function
|
17 |
+
def preprocess_audio(audio_data, sampling_rate=16_000):
|
|
|
18 |
# Ensure that the input data is a valid format for the model
|
19 |
+
# Convert the audio data to a numpy array with a correct shape
|
20 |
+
raw_speech = np.asarray(audio_data, dtype=np.float32)
|
21 |
+
|
22 |
+
# Pad or truncate the audio data to the required length
|
23 |
+
if len(raw_speech) > processor.feature_extractor.max_len:
|
24 |
+
raw_speech = raw_speech[:processor.feature_extractor.max_len]
|
25 |
+
else:
|
26 |
+
raw_speech = np.pad(raw_speech, (0, processor.feature_extractor.max_len - len(raw_speech)))
|
27 |
+
|
28 |
+
# Process the audio data using the Whisper processor
|
29 |
+
processed_data = processor(
|
30 |
+
raw_speech,
|
31 |
+
sampling_rate=sampling_rate,
|
32 |
+
return_tensors="pt",
|
33 |
+
padding=True,
|
34 |
+
truncation=True
|
35 |
+
)
|
36 |
+
|
37 |
+
return processed_data.input_features
|
38 |
|
39 |
# Function to perform ASR on audio data
|
40 |
def transcribe_audio(audio_data):
|