Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
|
3 |
+
subprocess.run(["pip", "install", "datasets"])
|
4 |
+
subprocess.run(["pip", "install", "transformers"])
|
5 |
+
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
9 |
+
|
10 |
+
# Load model and processor
|
11 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
|
12 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
|
13 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")
|
14 |
+
|
15 |
+
|
16 |
+
# Custom preprocessing function
|
17 |
+
def preprocess_audio(audio_data):
|
18 |
+
# Apply any custom preprocessing to the audio data here if needed
|
19 |
+
return processor(audio_data, return_tensors="pt").input_features
|
20 |
+
|
21 |
+
# Function to perform ASR on audio data
|
22 |
+
def transcribe_audio(input_features):
|
23 |
+
# Generate token ids
|
24 |
+
predicted_ids = model.generate(input_features)
|
25 |
+
|
26 |
+
# Decode token ids to text
|
27 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
28 |
+
|
29 |
+
return transcription[0]
|
30 |
+
|
31 |
+
# Create Gradio interface
|
32 |
+
audio_input = gr.Audio(preprocess=preprocess_audio)
|
33 |
+
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()
|