Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,53 +4,31 @@ subprocess.run(["pip", "install", "transformers"])
|
|
4 |
subprocess.run(["pip", "install", "torchaudio", "--upgrade"])
|
5 |
|
6 |
import gradio as gr
|
7 |
-
from transformers import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
def
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
audio_data = torchaudio.transforms.Resample(sample_rate, 100000)(waveform)
|
36 |
-
audio_data = torchaudio.functional.gain(input_features, gain_db=5.0)
|
37 |
-
|
38 |
-
# Apply custom preprocessing to the audio data if needed
|
39 |
-
input_values = processor(input_features[0], return_tensors="pt").input_values
|
40 |
-
|
41 |
-
# Perform ASR
|
42 |
-
with torch.no_grad():
|
43 |
-
logits = model(input_values).logits
|
44 |
-
|
45 |
-
# Decode the output
|
46 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
47 |
-
transcription = processor.batch_decode(predicted_ids)
|
48 |
-
|
49 |
-
return transcription[0]
|
50 |
-
|
51 |
-
except Exception as e:
|
52 |
-
return f"An error occurred: {str(e)}"
|
53 |
-
|
54 |
-
# Create Gradio interface
|
55 |
-
audio_input = gr.Audio(sources=["microphone"])
|
56 |
-
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()
|
|
|
4 |
subprocess.run(["pip", "install", "torchaudio", "--upgrade"])
|
5 |
|
6 |
import gradio as gr
|
7 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
8 |
+
|
9 |
+
# Load Whisper ASR model and processor
|
10 |
+
model_name = "openai/whisper-small"
|
11 |
+
processor = WhisperProcessor.from_pretrained(model_name)
|
12 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
13 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")
|
14 |
+
|
15 |
+
def transcribe_audio(input_audio):
|
16 |
+
# Process audio using the Whisper processor
|
17 |
+
input_features = processor(input_audio, return_tensors="pt").input_features
|
18 |
+
|
19 |
+
# Generate token ids
|
20 |
+
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
21 |
+
|
22 |
+
# Decode token ids to text
|
23 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
24 |
+
|
25 |
+
return transcription[0]
|
26 |
+
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=transcribe_audio,
|
29 |
+
inputs=gr.Audio(source="microphone", type="wav", label="Speak"),
|
30 |
+
outputs="text",
|
31 |
+
live=True
|
32 |
+
)
|
33 |
+
|
34 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|