Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,24 +8,24 @@ subprocess.run(["pip", "install", "transformers"])
|
|
8 |
subprocess.run(["pip", "install", "librosa", "soundfile"])
|
9 |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
10 |
|
|
|
11 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
12 |
-
|
13 |
|
14 |
-
#
|
15 |
-
def transcribe_audio(audio):
|
16 |
-
input_features = processor(audio, return_tensors="pt").input_features
|
17 |
-
predicted_ids = model.generate(input_features)
|
18 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
19 |
-
return transcription[0]
|
20 |
-
|
21 |
-
# load model and processor
|
22 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
23 |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
24 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Create Gradio interface
|
31 |
audio_input = gr.Audio()
|
|
|
8 |
subprocess.run(["pip", "install", "librosa", "soundfile"])
|
9 |
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
10 |
|
11 |
+
import gradio as gr
|
12 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
13 |
+
import numpy as np
|
14 |
|
15 |
+
# Load model and processor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
17 |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
18 |
forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")
|
19 |
|
20 |
+
def transcribe_audio(audio):
|
21 |
+
# Assuming sampling_rate is known
|
22 |
+
sampling_rate = 16000 # Change this to the actual sampling rate of your audio
|
23 |
+
|
24 |
+
# Ensure to pass the sampling_rate parameter
|
25 |
+
input_features = processor(audio, sampling_rate=sampling_rate, return_tensors="pt").input_features
|
26 |
+
predicted_ids = model.generate(input_features)
|
27 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
28 |
+
return transcription[0]
|
29 |
|
30 |
# Create Gradio interface
|
31 |
audio_input = gr.Audio()
|