MusIre commited on
Commit
ecc641e
·
1 Parent(s): 2660f17

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -3,18 +3,21 @@ subprocess.run(["pip", "install", "gradio", "--upgrade"])
3
  subprocess.run(["pip", "install", "transformers"])
4
  subprocess.run(["pip", "install", "torchaudio", "--upgrade"])
5
 
 
6
  import gradio as gr
7
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
8
 
9
  # Load Whisper ASR model and processor
10
  model_name = "openai/whisper-small"
11
- processor = WhisperProcessor.from_pretrained(model_name)
12
  model = WhisperForConditionalGeneration.from_pretrained(model_name)
13
  forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")
14
 
 
 
15
  def transcribe_audio(input_audio):
16
- # Process audio using the Whisper processor
17
- input_features = processor(input_audio, return_tensors="pt").input_features
18
 
19
  # Generate token ids
20
  predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
@@ -26,7 +29,7 @@ def transcribe_audio(input_audio):
26
 
27
  iface = gr.Interface(
28
  fn=transcribe_audio,
29
- inputs=gr.Audio(type="numpy", label="Speak"),
30
  outputs="text",
31
  live=True
32
  )
 
3
  subprocess.run(["pip", "install", "transformers"])
4
  subprocess.run(["pip", "install", "torchaudio", "--upgrade"])
5
 
6
+ import numpy as np
7
  import gradio as gr
8
  from transformers import WhisperProcessor, WhisperForConditionalGeneration
9
 
10
  # Load Whisper ASR model and processor
11
  model_name = "openai/whisper-small"
12
+ processor = WhisperProcessor.from_pretrained(model_name, sampling_rate=44100)
13
  model = WhisperForConditionalGeneration.from_pretrained(model_name)
14
  forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe")
15
 
16
+
17
+
18
  def transcribe_audio(input_audio):
19
+ input_audio_np = np.array(input_audio[0].data)
20
+ input_features = processor(input_audio_np, return_tensors="pt").input_features
21
 
22
  # Generate token ids
23
  predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
 
29
 
30
  iface = gr.Interface(
31
  fn=transcribe_audio,
32
+ inputs=gr.Audio(sources=["microphone"], label="Speak"),
33
  outputs="text",
34
  live=True
35
  )