import subprocess import gradio as gr # Add this import statement subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"]) subprocess.run(["pip", "install", "gradio", "--upgrade"]) subprocess.run(["pip", "install", "transformers"]) subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) # Install necessary libraries !pip install gradio torch torchaudio import gradio as gr import torchaudio from transformers import pipeline # Load the Whispy/Whisper Italian ASR model whisper_italian_asr = pipeline("whisper-italian") # Define the ASR function def transcribe_audio(audio): # Save the audio file torchaudio.save("user_audio.wav", audio.squeeze().numpy(), 16000) # Load the saved audio file user_audio, _ = torchaudio.load("user_audio.wav", normalize=True) # Perform ASR using the Whispy/Whisper Italian model transcription = whisper_italian_asr(user_audio.numpy()) return transcription[0]["transcription"] # Create the Gradio interface audio_input = gr.Audio(preprocess=torchaudio.transforms.Resample(orig_freq=44100, new_freq=16000)) iface = gr.Interface( fn=transcribe_audio, inputs=audio_input, outputs="text", live=True, interpretation="default" ) # Launch the Gradio app iface.launch(share=True)