import subprocess subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"]) subprocess.run(["pip", "install", "gradio", "--upgrade"]) subprocess.run(["pip", "install", "datasets"]) subprocess.run(["pip", "install", "transformers"]) subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) import gradio as gr import numpy as np from transformers import WhisperProcessor, WhisperForConditionalGeneration # Load model and processor processor = WhisperProcessor.from_pretrained("openai/whisper-large") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large") forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe") # Custom preprocessing function def preprocess_audio(audio_data, sampling_rate=16_000): # Ensure that the input data is a valid format for the model # Convert the audio data to a numpy array with a correct shape raw_speech = np.asarray(audio_data, dtype=np.float32) # Pad or truncate the audio data to the required length if len(raw_speech) > processor.feature_extractor.max_len: raw_speech = raw_speech[:processor.feature_extractor.max_len] else: raw_speech = np.pad(raw_speech, (0, processor.feature_extractor.max_len - len(raw_speech))) # Process the audio data using the Whisper processor processed_data = processor( raw_speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True, truncation=True ) return processed_data.input_features # Function to perform ASR on audio data def transcribe_audio(audio_data): # Preprocess the audio data input_features = preprocess_audio(audio_data) # Generate token ids predicted_ids = model.generate(input_features) # Decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription[0] # Create Gradio interface audio_input = gr.Audio() gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()