import subprocess subprocess.run(["pip", "install", "gradio", "--upgrade"]) subprocess.run(["pip", "install", "transformers"]) subprocess.run(["pip", "install", "torchaudio", "--upgrade"]) import gradio as gr from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torchaudio # Load model and processor processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian") model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-italian") # Function to perform ASR on audio data def transcribe_audio(audio_data): # Convert audio data to mono and normalize audio_data = torchaudio.transforms.Mono()(audio_data) audio_data = torchaudio.functional.gain(audio_data, gain_db=5.0) # Resample if needed (Wav2Vec2 model requires 16 kHz sampling rate) if audio_data[1] != 16000: audio_data = torchaudio.transforms.Resample(audio_data[1], 16000)(audio_data[0]) # Apply custom preprocessing to the audio data if needed input_values = processor(audio_data[0].numpy(), return_tensors="pt").input_values # Perform ASR with torch.no_grad(): logits = model(input_values).logits # Decode the output predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) return transcription[0] # Create Gradio interface audio_input = gr.Audio() gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()