import subprocess import gradio as gr # Add this import statement subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"]) subprocess.run(["pip", "install", "gradio", "--upgrade"]) subprocess.run(["pip", "install", "datasets"]) subprocess.run(["pip", "install", "transformers"]) subprocess.run(["pip", "install", "librosa", "soundfile"]) subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) from transformers import WhisperProcessor, WhisperForConditionalGeneration from datasets import load_dataset # Define the transcribe_audio function def transcribe_audio(audio): input_features = processor(audio, return_tensors="pt").input_features predicted_ids = model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription[0] # load model and processor processor = WhisperProcessor.from_pretrained("openai/whisper-small") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe") # load dummy dataset and read audio files ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") sample = ds[0]["audio"] # Create Gradio interface audio_input = gr.Audio() gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()