import subprocess subprocess.run(["pip", "install", "gradio", "--upgrade"]) subprocess.run(["pip", "install", "transformers"]) subprocess.run(["pip", "install", "torchaudio", "--upgrade"]) import gradio as gr from transformers import WhisperProcessor, WhisperForConditionalGeneration # Load Whisper ASR model and processor model_name = "openai/whisper-small" processor = WhisperProcessor.from_pretrained(model_name) model = WhisperForConditionalGeneration.from_pretrained(model_name) forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe") def transcribe_audio(input_audio): # Process audio using the Whisper processor input_features = processor(input_audio, return_tensors="pt").input_features # Generate token ids predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) # Decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription[0] iface = gr.Interface( fn=transcribe_audio, inputs=gr.Audio(source="microphone", type="wav", label="Speak"), outputs="text", live=True ) iface.launch()