import subprocess subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"]) subprocess.run(["pip", "install", "gradio", "--upgrade"]) subprocess.run(["pip", "install", "datasets"]) subprocess.run(["pip", "install", "transformers"]) subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"]) import gradio as gr import numpy as np import torch from transformers import WhisperProcessor, WhisperForConditionalGeneration # Load model and processor processor = WhisperProcessor.from_pretrained("openai/whisper-large") model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large") forced_decoder_ids = processor.get_decoder_prompt_ids(language="italian", task="transcribe") # Custom preprocessing function def preprocess_audio(audio_data, sampling_rate=16_000): sample_rate, raw_audio = audio_data raw_speech = np.asarray(raw_audio, dtype=np.float32) return {"input_values": raw_speech, "sampling_rate": sample_rate} # Function to perform ASR on audio data def transcribe_audio(audio_data): input_features = preprocess_audio(audio_data) input_values = torch.tensor(input_features["input_values"]).unsqueeze(0) # Add batch dimension # Ensure the input tensor has the correct shape input_values = input_values.view(1, 1, -1) predicted_ids = model.generate(input_values) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription[0] # Create Gradio interface audio_input = gr.Audio() gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()